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Abstract

The dissertation develops several new schemes and algorithms for solving dis-

tributed optimization problems in large-scale networked systems in which a group

of agents are to collaboratively seek the global optimum through peer-to-peer com-

munication networks. The problem arises in various application domains, such as

coordinated control, resource allocation and sensor fusion. Common features to

these areas are that the system in question typically has a large number of agents

involved without any centralized coordinator and that resources, such as sensing,

communication and computation, are usually scattered throughout the network.

As a result, the agents have to coordinate their behaviors with each other through

only local information exchange to achieve a desired network (system) objective.

For coordinated control of large-scale networked systems, we propose a novel dis-

tributed simultaneous perturbation approach (D-SPA) to solve the distributed op-

timization problem based on simultaneous perturbation techniques as well as con-

sensus strategies. The proposed method is model-free and requires little knowledge

on the coupling structure of the problem to be optimized. Using singular pertur-

bation and averaging theory, we show that the proposed scheme will converge to

the neighborhood of the Pareto optimum of the problem so long as the energy of

perturbation signals is sufficiently small. To illustrate its effectiveness, we apply

the proposed approach to a simulated offshore wind farm for energy maximization

and make a comprehensive comparison with the existing state-of-the-art technique.

On the other hand, for coordinated estimation in large-scale statistical signal pro-

cessing, most existing distributed algorithms usually require a perfect synchroniza-

tion mechanism and decaying stepsize for achieving the exact optimum, restricting

it from being asynchronously implemented and resulting in slower convergence

rates. In addition, the assumption of the boundedness of (sub)gradient is often

made for convergence analysis, which is quite restrictive in unconstrained problems.

To overcome these issues, we propose two augmented distributed algorithms both

of which involve an extra step of consensus in each iteration. Specifically, a general
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efficient distributed algorithm, termed Distributed Forward-Backward Bregman

Splitting (D-FBBS), is proposed to simultaneously solve the primal problem as

well as its dual based on the Bregman method and operator splitting. The pro-

posed algorithm allows agents to communicate asynchronously and thus lends itself

to stochastic networks. This algorithm belongs to the family of general proximal

point algorithms and is shown to have close connections with some existing well-

known algorithms for fixed networks but generally different from them in handling

stochastic networks. To further tackle the asynchronous issues in computation, we

propose a new augmented distributed gradient method (AugDGM) based on the

existing well-known distributed gradient method. Both algorithms are able to con-

verge to the exact optimum even with constant stepsize over stochastic networks

without the assumption of boundedness of (sub)gradient. With proper assump-

tions, we establish a non-ergodic convergence rate of o(1/k) in terms of fixed point

residual for fixed networks and an ergodic convergence rate of O(1/k) for stochas-

tic networks respectively for the D-FBBS algorithm. For the asynchronous version

of AugDGM (AsynDGM), we obtain an ergodic convergence rate of O(1/
√
k) in

terms of the objective error for strongly convex functions with Lipschitz gradients

over both fixed and stochastic networks. Some examples of sensor fusion problems

are provided to illustrate the effectiveness of the proposed algorithms.
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Chapter 1

Introduction

1.1 Scope and Overview

Networked systems are becoming prevalent nowadays due to the rapid development

and deployment of control, communication and computation technologies in varied

applications [1]. Examples include power grids [2], multi-robot systems [3] and

sensor networks [4], just to name a few. A common feature of this kind of systems

is that they typically consist of a large number of subsystems (agents) without

any center involved1, and the constituent components, such as actuators, sensors

and controllers, are usually spatially scattered and connected over communication

networks (cf. Figure 1.1). As a result, conventional centralized schemes will be

no longer valid and, instead, each subsystem has to operate locally for the sake

of scalability and robustness, leading to distributed approaches. In distributed

schemes, agents acquire data locally, take actions independently and exchange

information constantly with each other in order to serve certain network goals.

Distributed optimization has recently received renewed attention from the control

and machine learning communities due to its wide applications in resource alloca-

tion [5], sensor fusion [6] and distributed learning [7]. Many coordinated control and

estimation problems, such as distributed model predictive control (D-MPC) [8] and

source localization [4], can be casted as distributed optimization problems (DOP).

The desire of distributed optimization mainly comes from the requirements of faster

and scalable algorithms by allocating relatively light subproblems to agents with

1It is impractical to have a central coordinator taking charge of the whole large-scale system.

1



2 1.1. Scope and Overview
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Figure 1.1: An illustration of a typical large-scale networked system.

limited computational power and communication resources, as well as the privacy

concern, i.e., the objective being locally known to the associated agent. Besides

privacy and speed, there is a more fundamental concern: the distributed scheme

or algorithm should be able to operate correctly in time-varying and asynchronous

scenarios for robustness concern (see Figure 1.2 for an overview of the practical

concerns and issues of distributed optimization). The ultimate goal of distributed

optimization is to have all agents coordinated in a distributed manner to achieve

certain system objective while still taking into account their local interests. In

large-scale dynamic systems, such as wind farm systems, one of the key problems

is to coordinate the operating point of each subsystem (e.g., wind turbine) in order

to reach an overall target, e.g., maximizing the overall power generation. Also, in

large-scale signal processing, sensors need to work in collaboration with others for

completing an overall task, such as reconstructing a temperature field or localizing

a source which cannot be done by any sensor alone.

Distributed
Optimization

PrivacyScalability

Computational
Complexity

H
eterogeneity
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g 

To
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Figure 1.2: The main practical concerns and issues of distributed optimization.
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On the other hand, in real large-scale networked systems, subsystems are coupled

into each other in a very complex way and the comprehensive model of high-fidelity

is too complex to be obtained. In addition, the communication network associated

with the system is usually vulnerable to errors and is subject to random failures,

leading to time-varying networks. Moreover, agents operate independently and may

run out of pace with others due to the lack of global coordinator. One of the key

challenges will be on how one can design a proper distributed scheme or algorithm

that not only allows agents to operate locally and independently with each other

but also be able to obtain the overall goal even under varying (stochastic) networks

and asynchronous implementation2, and being immune to the varying topology of

the system. To this end, we study two basic distributed optimization problems

involved in large-scale dynamic systems and sensor networks, corresponding to

coordinated control and estimation over networks respectively. In particular, we

develop a distributed scheme for the optimization of the steady-state performance

of large-scale dynamic systems. The proposed scheme is immune to the varying

coupling structure as well as the heterogeneity of the system to be controlled, i.e.,

using different feedback gains for different subsystems. For distributed estimation

problems, we propose two basic distributed algorithms that not only allow for using

constant stepsizes (thus being adaptive to varying environments) but also, most

importantly, be able to seek the exact global optimal value of estimation even under

stochastic networks and asynchronous implementation.

1.2 Major Contributions

Our main contributions can be stated as follows:

• Coordinated control over networks : For coordinated control of large-scale

networked dynamic systems, we propose a novel approach for distributed op-

timization of the steady-state performance of the system based on consensus

theory. The proposed scheme has favorable features of scalability and robust-

ness in the sense that each subsystem takes action locally and only needs to

communicate little information with its immediate neighbors for coordination

without any center involved. We generalize the simultaneous perturbation

2See Section 6.4.1 for more details on asynchronous implementation.



4 1.2. Major Contributions

technique to orthogonal perturbation technique where we employ orthogo-

nal signals to perturb the system and extract the gradient information for

subsequent optimization. In contrast to most related works, the stability of

the system we obtained is semi-global and thus allows for more applications.

Indeed, the proposed scheme is expected to be applicable to many existing

large-scale dynamic systems, such as wind farm systems.

• Coordinated estimation over fixed networks : For distributed estimation prob-

lems in large-scale signal processing, we propose two basic distributed algo-

rithms, namely AugDGM and D-FBBS. AugDGM can be regarded as an aug-

mented version of the existing well-known distributed (sub)gradient method

while D-FBBS can be thought of as node-based distributed alternating direc-

tion method of multipliers. The latter is shown to not only solve the primal

problem but also the dual problem which is a typical problem in resource

allocation. Both algorithms are able to seek the exact optimum even with

constant stepsizes. For convergence performance, we establish an ergodic

convergence rate of O(1/
√
k) in terms of the objective error for AugDGM

employing a homogeneous (same) stepsize for coercive and convex functions

with Lipschitz gradients while a non-ergodic convergence rate of o(1/k) in

terms of the fixed point residual for D-FBBS for general convex functions.

Last but not least, to the best of our knowledge, we are the first to intro-

duce the Bregman splitting method to solve distributed optimization prob-

lems which, in fact, provide a framework that allows us to design various

distributed algorithms for different specific problems.

• Coordinated estimation over stochastic networks : The above proposed al-

gorithms can be applied to stochastic networks even under asynchronous

settings. In particular, with the assumption of strong convexity of the cost

function, we establish an ergodic convergence rate of O(1/k) in terms of the

fixed point residual for D-FBBS over stochastic networks. Moreover, we show

that, even under asynchronous implementation, AsynDGM can still achieve

an ergodic convergence rate of O(1/
√
k) in terms of the objective error for

strongly convex functions with Lipschitz gradients, which is the known best

rate under the same setting as this work. Further, both algorithms are still

able to seek the exact optimum almost surely even with constant stepsizes,

yielding adaptive capability to varying environments. In these regards, we
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have made significant improvements to distributed optimization, especially

in dealing with stochastic networks and asynchronous implementation.

For the coordinated estimation part, the main differences of the proposed algo-

rithms over the existing ones is summarized in terms of assumption, formulation,

convergence rate and applicability to stochastic networks as follows:

Algorithm
Consensus-based† Dual-Decomposition-based

DSM/DualAve∗ ATC NRC AsynDGM D-FBBS/P-EXTRA D-ADMM AsynADMM
Assumption Bounded Bounded Coercive f: proper, closed, convex,

Convex
(Convex) (Sub)gradient Hessien f ∈ C1 i.e., f ∈ Γ(H)

Formulation Node-based Edge-based
Convergence Objective Error (OBE) Fixed Point Residual (FPR)

Rate O(
log(k)√

k
)‡ N.A. O(pk) O( 1√

k
) o( 1

k
) N.A.

Stochastic
Yes

Yes, but f to be
No

Network strongly convex

Remark
∗: DualAve stands for Dual Averaging Method [9].
†: Fast Distributed Gradient Methods require multiple cycles of running consensus at each iteration [10].
‡: The rate is improved to O(log(k)/k) when f is strongly convex [11] or Nestrov method is employed [10].

Table 1.1: A comprehensive comparison of existing algorithms

1.3 Outline of the Thesis

Chapter 1 introduces the scope of this thesis and provides an overview of the general

problem we consider in terms of the practical concerns as well as issues involved,

which essentially motivates this research work. In this chapter, we also state our

main contributions and briefly outline the thesis.

Chapter 2 reviews the existing literature from two basic categories: coordinated

control over networks (corresponding to large-scale dynamic systems) and coordi-

nated estimation over networks (corresponding to large-scale sensor networks). In

particular, we provide a comprehensive review of the existing schemes and algo-

rithms that are employed to solve the distributed optimization problem as well as

the main drawbacks of these approaches, which is followed by the statement of

what we have achieved towards overcoming these drawbacks.

Chapter 3 is devoted to the general distributed optimization problem as well as

the philosophy behind it. In particular, we provide some insights to the prob-

lem by re-examining the popular (dynamic) average consensus protocol from the

perspective of distributed optimization as well as the fundamental concept of co-

ordination. These insights are then consolidated into the guiding principles for
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designing distributed schemes and algorithms, which turns out to be very useful in

understanding the schemes as well as algorithms proposed in this thesis.

Chapter 4 deals with the distributed optimization problem involved in networked

large-scale dynamic systems. In particular, we present a distributed simultaneous

perturbation approach for solving the problem by employing simultaneous pertur-

bation techniques as well as consensus strategies. The stability analysis of the

specific (basic and high-order) schemes is carried out based on singular perturba-

tion and averaging theory. In this chapter, we also apply the proposed scheme to

coordinated control of a simulated wind farm system and make a comprehensive

comparison with the state-of-the-art technique to verify their effectiveness.

Chapter 5 is dedicated to the distributed estimation problem in large-scale sen-

sor networks with fixed topology and synchronous implementation. In particular,

under the setting of fixed topology, we develop two basic distributed algorithms

for solving the estimation problem. We establish the connections of the proposed

algorithms to some well-known existing algorithms and show that they outperform

the existing algorithms in terms of convergence speed as well as accuracy.

Chapter 6 extends the algorithms proposed in the previous chapter to stochastic

networks and asynchronous implementation. In particular, we show that the pro-

posed algorithms, with some extra conditions on the cost function, can be still

guaranteed to converge to the exact optimum even over stochastic networks while

being asynchronous implemented. In this chapter, we have also established the

specific convergence rates for both proposed algorithms, which are the best known

rates under the same setting as this research work.

Chapter 7 summarizes the thesis and envisions the future work.



Chapter 2

Literature Review

2.1 Coordinated Control over Networks

Coordinated control of large-scale networked dynamic systems has been receiving

renewed interests nowadays with emphasis on local communication among subsys-

tems and local control of individual subsystems [1]. At the heart of this kind of

control is distributed optimal control which not only stabilizes the overall system

in a distributed fashion but also, most importantly, optimizes its transient as well

as steady-state performance. One of the most well-established techniques is the dis-

tributed model predictive control (D-MPC) [12–15]. This control method, however,

mainly focuses on real-time optimization of the transient performance of the sys-

tem in a distributed way with known setpoint. In contrast to this method, there is

also a resurgence of interest in extremum seeking control (ESC) which attempts to

optimize the steady-state performance of the system in real-time without knowing

the analytical form of performance so long as its value can be measured [16, 17].

This technique has been employed for seeking the Nash equilibrium in a multi-

player game [18, 19], which is usually a sub-optimal solution [20]. It is well known

that game theory, as a modeling technique dealing with the optimization problem

of multiple decision makers, is closely related to distributed optimal control [20].

In particular, Waslander et al. [21] made an attempt to solve the decentralized

optimization problem by utilizing the Nash Bargaining method. Semsar-Kazerooni

and Khorasani [22] considered the multiple LQR problem from the viewpoint of

game theory and attempted to obtain the Pareto-efficient solution.

7
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Although many approaches are available for optimizing the steady-state perfor-

mance of the system, gradient-like methods are much more robust and suitable

in dealing with large-scale problems. In fact, gradient-based methods are widely

employed in the existing literature to solve large-scale optimization problems in

a distributed way. In particular, Tsitsiklis et al. [23] first studied the distributed

gradient-like optimization algorithms in which a bunch of processors perform com-

putations and exchange messages intending to minimize a common cost function.

In the context of distributed computation, consensus theory lends itself to dis-

tributed implementation of algorithms as it allows agents to obtain global results

by taking local actions and communicating limited information with its neigh-

bors [24–26]. In line with these works, Nedic and Ozdaglar [27] applied consensus

theory to multi-agent optimization problems where each agent only knows the cost

of itself and aims to minimize the sum of the cost of all agents through cooper-

ation with others, resulting in a distributed (sub)gradient method (DSM). Two

drawbacks of these kinds of methods are that the communication cost will increase

with the dimension of the problem to be optimized and the gradient should be

computable exactly for optimization. On the other hand, dual decomposition has

also been widely used to solve large-scale optimization problems which are sepa-

rable in the dual domain [28, 29]. Rather than directly dealing with the primal

problem, this method solves the dual counterpart which can be further divided into

several small sub-problems that are relatively light to solve. Examples include for-

mation control [3], multi-agent optimization [28], network utility maximization [30]

and resource allocation [5]. This technique, however, requires the cost function to

be separable for efficient gradient calculation and needs to consider the specific

structure of the problem, restricting its application in dynamic networks.

In large-scale dynamic optimization problems, gradients may not be immediately

available and we have to resort to some gradient approximation approaches. Instead

of using the true gradient, one can solve the optimization problem by using the

pseudo-gradient estimated from probing the system using perturbation techniques.

One promising approach is the abovementioned ESC technique which has been

widely employed to optimize systems without knowing their specific reference-to-

output equilibrium map [16]. Here, we are particularly interested in the distributed

implementation of ESC, which we term D-ESC. Existing applications of D-ESC in-

clude mobile sensor networks [18] and non-cooperative game [19]. Since they only

considered non-cooperative games, their results are of Nash Equilibrium [20], which
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is a sub-optimal solution. In order to obtain the global optimum (Pareto-efficient

solution), using dual decomposition, the authors developed a preliminary version

of D-ESC scheme which takes into account the global constraints but the proposed

scheme needs to explicitly consider the physical interaction topology among agents

which is not practical especially in dynamically changing environment [31]. To deal

with time-varying networks, Kvaternik and Pavel [32] incorporated consensus pro-

tocols into extremum seeking algorithms. However, there is no explicit explanation

on how to obtain the gradient information using certain probing technique which

is crucial for implementation1. Although ESC has a long history [17], the rigorous

proof of its stability of the general form is given only recently in [33] for local results

and [34] for non-local results using singular perturbation and averaging analysis.

It is claimed that their stability results can be extended without much effort to

multi-variable extremum seeking control as done in [35].

In this thesis, we propose a new approach for optimizing the steady-state perfor-

mance of the system in a distributed manner by resorting to simultaneous pertur-

bation [36, 37] and consensus theory. In our approach, each agent is assumed to

update only a subset of the components of the global vector, which is desirable

in cases where only local action can be taken. The proposed scheme, termed dis-

tributed simultaneous perturbation approach (D-SPA), is model-free (derivative-

free) and, different from most existing literature, only requires little knowledge

regarding the dimension of the system as well as the underlying coupling structure

of the problem2. It is also envisioned that the favorable properties of consensus

algorithms are preserved, such as allowing for asynchronous implementation. We

will show that the D-SPA scheme is able to obtain Pareto-optimum, which takes

into account the interest of the adversary, in a distributed manner with a gap of

the same order of the root mean square (RMS) amplitude of perturbation signals.

In all, the D-SPA scheme is especially suitable for problems where we do not have

much knowledge, e.g, wind farm system where the aerodynamic interactions among

turbines are difficult to model. However, the drawback of gradient-free techniques

is their slow convergence speed. Some extensions can be made to overcome this

issue, e.g., Newton-based multi-variable extremum seeking control [38].

1Indeed, it is impossible to obtain the gradient information therein since the perturbation can
not be made on the introduced auxiliary variables.

2Thus, the proposed scheme has the potential to adapt to slowly changing environment.
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2.2 Coordinated Estimation over Networks

Existing distributed algorithms for large-scale coordinated estimation problems can

be generally categorized into two main steams: (1) consensus-based approach, and

(2) dual-decomposition-based approach. The former relies on the approximation of

distributed algorithms to its centralized counterpart via consensus mechanism while

the later incorporates the consensus requirement as a global consistency constraint,

leading to a constrained optimization problem (cf. Section 3.2.2). In the following,

we first review the existing algorithms that can be applied into fixed networks under

synchronous implementation and then move on to discuss those that can be further

applied into stochastic networks even under asynchronous implementation. The

comprehensive comparison of the convergence performance of existing algorithms

is addressed separately at the end of this section.

2.2.1 Fixed network and synchronous implementation

Besides (sub)gradient-based methods as mentioned above (cf. Section 2.1) [23, 27],

there have been many extended versions presented in the existing literature. In

particular, to speed up the convergence, Zanella and Varagnolo et al. [39] devel-

oped a distributed version of the Newton-Raphson algorithm by making use of the

second-order derivative. Utilizing proximal functions, Duchi and Agarwal et al. [9]

proposed a dual subgradient averaging method which shows better convergence re-

sults in terms of network scaling. The primal-dual approach has been widely used

to account for (global) constraints imposed on the system [40–42]. In addition,

cases with noisy observation of the gradient have been considered in [11, 43] and

with directed graphs in [44]. However, most of the abovementioned consensus-based

methods3 require decaying stepsizes and the assumption of bounded (sub)gradient

to achieve the exact optimum.

On the other hand, dual decomposition has been widely employed to solve large-

scale optimization problems [28, 29]. It has been shown that distributed opti-

mization problems can be transferred to an equivalent constrained optimization

problem [45] for which we have a lot of existing solution techniques available. In

particular, doing this allows us to transfer the problem as a saddle point problem

3Only the algorithm of Newton-Raphson consensus allows for using constant stepsize.
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for which the traditional Arrow-Hurwitz-Uzawa method can be applied [46], espe-

cially the augmented Lagrangian method which permits better convergence perfor-

mance [47]. However, introducing the augmented term results in the coupling issue

among cost functions. To overcome this, a popular alternating direction method of

multipliers (ADMM) is proposed which is shown to have very good convergence per-

formance even for large-scale problems [48]. Distributed versions of ADMM have

also been proposed for solving the distributed optimization problem [49–51]. How-

ever, this kind of technique, as mentioned earlier, depends heavily on the (coupling)

structure of the problem. It is well known that the abovementioned methods are

specific applications of the proximal point algorithm and operator splitting [52–54],

which have been widely applied in signal processing [55] and image processing[56].

Moreover, due to the efficiency in solving optimization problems, Bregman-based

proximal point algorithms, where the Euclidean distance is replaced with Bregman

distance, have been successfully applied into image processing [57–59], min-max

problems [60] and compressive sensing [61]. The dual-decomposition-based ap-

proach is generally able to achieve the exact optimum and obtain a better conver-

gence rate. However, different from the consensus-based approach, its effectiveness

relies heavily on the knowledge of the structure of the problem.

In this thesis, we propose two basic distributed algorithms. The first algorithm,

termed AugDGM, can be regarded as an augmented version of distributed gradient

methods where we introduce an extra step for the consensus on the gradients of ob-

jective functions. This algorithm allows for using uncoordinated stepsizes for local

optimization, and is guaranteed to converge to the exact optimum even with con-

stant stepsizes. This is a distinctive feature of the algorithm, which is not observed

in the existing distributed algorithms in [6, 9, 10, 27, 49, 50, 62, 63]. We drop the

restrictive assumption of boundedness of (sub)gradients of objective functions as

required by those in [10, 27, 44] and, instead, only assume the standard condition of

Lipschitz continuity to the problem. It is also important to note that the algorithm,

though, has a similar augmented form as the ones proposed in [10, 39, 45, 64], it

differs from them in that the assumptions (cf. Assumptions 5.6, 5.7, 6.3) are dif-

ferent and, most importantly, as we will show later, it can be applied to stochastic

networks even under asynchronous implementation.

The other distributed algorithm, termed D-FBBS, is proposed based on the Breg-

man method and operator splitting thus belonging to the big family of proximal
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point algorithms. Indeed, the Bregman splitting techniques used to develop this

algorithm provide a framework which allows us to design different efficient dis-

tributed algorithms for specific objective functions with certain properties (e.g.,

having Lipschitz gradients) by employing corresponding splitting schemes. This

proposed algorithm can deal with general convex functional and has close connec-

tions with some well-known existing algorithms. In particular, Jakovetic et al. [65]

studied the linear convergence rate of a class of distributed augmented Lagrangian

(AL) algorithms for twice continuously differentiable cost functions with a bounded

Hessian when there are sufficient inner iterations of consensus being carried out.

In the recent work [66], Shi et al. proposed a similar algorithm termed EXTRA

for cost functions having Lipschitz gradients4. They also extended the algorithm

to general convex problems and composite convex problems, yielding P-EXTRA

and PG-EXTRA, respectively [67]. The proposed D-FBBS algorithm, though is

generally different in its nature, has close connections with them in the sense that,

with proper parameter setting, these existing algorithms can be shown to be equiv-

alent to our algorithm with corresponding splitting schemes (cf. Section 5.3.4 for

the detailed analysis). Note that the Bregman splitting method has been used in

developing the Bregman Operator Splitting (BOS) algorithm [59] which deals with

general equality-constrained problems. However, we will show that our algorithm

differs from BOS in that we deal with distributed optimization problems and, in-

stead of using a self-defined strongly convex function, we use the objective function

to induce the Bregman distance. Also, different from this algorithm, we consider

an asymmetric saddle point problem (cf. Equation (5.22)), which, as we will see

later, allows us to effectively deal with stochastic networks. It should be noted that

the algorithm is node-based and thus, unlike the edge-based counterparts [50, 68],

is more capable in terms of algorithm scaling and distributed computation.

2.2.2 Stochastic network and asynchronous implementa-

tion

In distributed algorithms, due to the absence of global clock, agents will operate

according to their local clocks and the execution of the algorithm may be out of

synchronism. In addition, communication networks are vulnerable and are sub-

ject to random failures due to inevitable errors. Asynchronous implementation

4When the cost function is also strongly convex, linear convergence rate can be achieved.
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of algorithms is thus necessary and typically involves in communication as well as

computation processes. However, there are only few works devoted to asynchronous

issues of distributed optimization problems. In particular, to avoid the worst-case

bounded communication assumption made in [27], Lobel and Ozdaglar [69] consid-

ered the same distributed gradient method for stochastic networks where commu-

nication links are subject to random failures5. An asynchronous broadcast-based

algorithm is designed in [62] to deal with random link failures as well as uncoordi-

nated update. Srivastava and Nedic [43] considered the extension of this algorithm

to account for subgradient error and noisy communication links and established the

almost sure convergence for uncoordinated diminishing stepsize and error bounds

for constant stepsize for continuously differentiable and strongly convex functions.

Note that the communication model considered therein is bi-directional and the

algorithm requires the stepsize to follow certain predefined decaying rule and the

Poisson rates of activation to be the same for all agents to ensure the ability to

seek the exact optimum. Asynchronous computation of Newton-Raphson Consen-

sus (NRC) has been investigated in [70] which requires the cost function to be

continuous up to the second derivative. Asynchronous ADMM based on node-wise

or edge-wise randomized iterations have also been proposed for asynchronous im-

plementation [63, 65, 71]. However, their methods are mainly based on randomized

iteration of algorithms which requires the weight matrix to be constant [65, 68] and

thus should be deemed applicable only to fixed networks. Recently, a subgradient-

push approach built upon the well-known push-sum algorithm [26] is proposed

in [44] to account for asynchronous communication over directed networks.

2.2.3 Convergence rate comparison

The convergence rate of distributed algorithms established in the literature is

always inferior to their central counterparts. The difference of the convergence

performance is further enlarged when it comes to stochastic networks and asyn-

chronous implementation. In particular, both the dual-averaging method [9] and

subgradient-push method [44] can only achieve the ergodic6 rate of O(ln k/
√
k) in

terms of the objective error (OBE) with a decaying stepsize of 1/
√
k, and its im-

provement to O(ln k/k) is obtained in [10] with the accelerated Nesterov method

5The stochastic model therein is more general as they allow the link failures to be dependent.
6We refer to ergodic convergence rate as the rate obtained in terms of running average.
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and in [11] for strongly convex functions with Lipschitz gradients respectively. In

contrast, with D-FBBS algorithm, we establish a non-ergodic convergence rate of

o(1/k) in terms of the fixed point residual (FPR) for fixed networks which is com-

parable with the centralized counterpart7. With an extra assumption of strong

convexity of the cost function, we obtain an ergodic convergence rate of O(1/k)

for stochastic networks with the same algorithm. For AugDGM under fixed net-

works, we establish an ergodic convergence rate of O(1/
√
k) in terms of OBE for

coercive and convex functions with Lipschitz gradients while, for AsynDGM under

stochastic networks even in the context of asynchronous settings, we obtain an er-

godic convergence rate of O(1/
√
k) for strongly convex functions having Lipschitz

gradients. In these regards, we make a significant improvement on the convergence

performance of distributed algorithms for distributed optimization problems, mak-

ing them more suitable for asynchronous implementation over stochastic networks.

7Note that a very recent work also achieve the similar convergence rate as this work for fixed
networks [66] (see Section 5.3.4 for the detailed analysis).



Chapter 3

Distributed Optimization in

Networked Systems

This chapter introduces the general distributed optimization problem we will be

dealing with in subsequent chapters and provide some insights on distributed op-

timization. In particular, in Section 3.1, we will introduce the topology model,

including the coupling structure among agents and the topology of communication

network, as well as the formulation of the general optimization model to be con-

sidered. The well-known (dynamic) average consensus protocols are then reviewed

from a new perspective in Section 3.2, followed by some insights on distributed

optimization in Section 3.3, with an emphasis on the philosophy behind it.

3.1 Topology and Optimization Model

We consider a large-scale networked system consisting of a large number of sub-

systems (agents) each of which has a local objective to be optimized. We assume

agents are allowed to exchange information with each other in order to achieve

certain network (system) objective. In particular, we use Gp = (Vp, Ep) to denote

the coupling structure of the system. On the other hand, due to either the privacy

requirement or the limitation of communication resources, agents have to exchange

information with its immediate neighbors to come up with aggregated information

via certain communication network underpinned by a graph Gc = (Vc, Ec).

15
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Most existing networked systems naturally exhibits certain distributed coupling

structure which can be captured by a graph. For instance, in wind farm systems,

only the upstream wind turbine will impact the power generation of the down

stream turbine. For this kind of system, we only require Gp ⊆ Gc and we can de-

sign a trivial and more efficient communication protocol (e.g., simply summing up

the cost received from its downstream neighbor) that relies on merely the interact-

ing neighbors, leading to distributed scheme or algorithms. However, this kind of

protocol will disclose the information to its neighbors and is vulnerable to packet

loss and topology changing. It somewhat resembles centralized approach and, in

fact, it is the inherent distributed structure of the physical interaction that leads

to the distributed scheme. In order to account for the scenarios where Gp * Gc and

for generality, we assume each local objective is dependent of the entire decision

vector, yielding a fully coupled structure, i.e., Gp being a fully connected graph.

In this case, we need to design some distributed algorithms that can acquire the

aggregate information over the whole network by merely local communication and

computation. As we will show later, consensus protocols will play a key role in

achieving this goal. In addition, we assume the whole networked system can be

properly partitioned in such a way that each subsystem is loosely coupled with each

other. By being loosely coupled, we mean, by various means, each subsystem can

be approximated as an “oracle” system such that, whenever fed with certain input

θ, the system will return the corresponding output f(θ). This is particularly true

when it comes to optimize the quasi-steady-state performance of dynamic systems,

e.g., a wind turbine always working at certain operation point and producing cer-

tain power corresponding to this operation point. We thus assume a fully coupling

structure of the problem for generality and model the communication network as

a graph G = (V , E) with each node i ∈ V = {1, 2, ...,m} representing each agent

and each directed edge e ∈ E indicating the direction of allowed information flow.

Figure 3.1 illustrates the general distributed optimization model. Given an above-

mentioned networked system consisting of m agents, the objective of the network

is to minimize the following function in a cooperative way:

F (θ) =
m∑
i=1

fi(θ) (DOP)

where θ ∈ Rd is the global parameter to be optimized while fi : Rd → R∪ {±∞}
is the local cost function available only to agent i.
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Figure 3.1: An illustration of a general distributed optimization model. The
solid lines indicate the information flow while the circles denote the agents that

are fully coupled with each other through the global decision vector θ.

3.2 Canonical Distributed Optimization

We show that the well-known (dynamic) average consensus protocol can be re-

garded as a canonical distributed optimization problem in the sense that it can be

derived from the perspective of distributed optimization. We also provide the big

picture behind distributed optimization by re-examining the fundamental questions

of what coordination is and how we can achieve it.

3.2.1 Consensus protocol revisited

Consensus theory can be dated back to the DeGroot learning model where a group

of agents are to reach an agreement on the belief of certain subject via sharing their

individual opinions [72]. The formal definition of consensus seeking is as follows:

Definition 3.1 (Consensus Seeking [72]). Given a sequence {xk}k≥0 of m dimen-

sion, we say a consensus is reached if limk→∞ ‖xi,k − xj,k‖ = 0,∀i, j ∈ {1, 2, ...,m}.

Now, consider the canonical distributed optimization problem1 as follows:

min
xi

m∑
i=1

(xi − ri)2, s.t. xi = xj,∀i, j ∈ V ,

1It is not difficult to see that this is an alternative form conforming to the general distributed
optimization problem (DOP).
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which can be shown to be equivalent2 to

min
x

=
1

2
‖x− r‖2 , s.t. Kx = 0,

where KTK = L with L being the Laplacian matrix, we introduce the Lagrangian

associated with the above optimization problem:

ψ(x, y) =
1

2
‖x− r‖2 − yTKx.

Applying the inexact Uzawa Method to the above Lagrangian yields

x = inf
x
ψ(x, y) (3.1a)

ẏ = −Kx. (3.1b)

Solving (3.1b) analytically leads to

x = r +KTy (3.2a)

ẏ = −Kx. (3.2b)

Taking the derivative of both sides of (3.2a) and combining with (3.2b) leads to

ẋ = −KTKx+ ṙ = −Lx+ ṙ, (3.3)

This is exactly the dynamic average consensus. In addition, it is not difficult to

see that when r = 0, the above dynamics will reduce to

ẋ = −Lx, (3.4)

which is the well-known consensus protocol.

Remark 3.1. As an extension to the basic consensus protocol (3.4), dynamic aver-

age consensus (3.3) can ensure that the instantaneous sum of the state of all agents

is the same as that of the reference input. This conservation property allows us to

track the time-varying average of the reference input and thus provides a feasible

way to develop distributed versions of many existing schemes and algorithms.

2This is true when we have certain property for the Laplacian matrix, i.e., null{L} =
null{K} = span{1} (see Section 5.3.1 for the detailed analysis).
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3.2.2 Consensus mechanism for coordination

Perhaps the most fundamental concern related to coordinated control and estima-

tion problems is on the formal definition of coordination which essentially charac-

terizes the associated distributed schemes and algorithms. In constrained optimiza-

tion, the Lagrange multiplier is often introduced via dual decomposition to account

for global constraints, functioning as a coordinator (e.g., the price in economics).

One may regard this as some sort of coordination among agents by satisfying cer-

tain constraints. However, this is done in a parallel way in the sense that there

is always an external center taking charge of the update of the Lagrange multi-

plier for ensuring constraints. Coordination is, instead, more about distributed

implementation where there is no super-center providing “instructions” for the

process of coordination. This is particularly true in distributed computation where

consensus theory is widely applied to achieve synchronization among agents’ com-

putation in the absence of global clock. The main purpose of consensus protocol

is to propagate (diffuse) information over the network in a completely distributed

way, guaranteeing the consistency of data updating. Thus, consensus mechanism

therein plays the similar role as a global clock. Although the consensus mechanism

is more fundamental than satisfying constraints in coordination, it can be stated

in terms of a global consistency constraint such as Lx = 0, which, as we will show

later, allows us to transform the original problem (DOP) to many equivalent forms

on which various distributed algorithms can be developed.

3.3 The Evolution and Philosophy

It is well known that centralized optimization suffers from high computational

complexity especially in dealing with large-scale problems. A popular way to tackle

this issue is to decompose the problem into several relatively light subproblems

each of which is then allocated to an agent with limited capacity, leading to a

parallel optimization technique such as the well-known ADMM [48]. This kind

of technique is, however, not totally distributed in the sense that there is still

a center unit involved taking charge of the update of some important parameter

(e.g., Lagrangian multiplier) which is centrally stored. Distributed optimization

pushes the idea further towards a totally distributed implementation by introducing
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to each agent a local copy of the parameter that is locally stored. In so doing,

agents are allowed to operate based on the local copy of the information on its

own without much intervention with its neighbors and only needs to exchange few

data for ensuring consistency via certain kind of consensus mechanism. Note that

distributed optimization differs from decentralized optimization in that it explicitly

takes into account the impacts of the interest of each agent on others (thus yielding

Pareto optimum) rather than simply ignores it leading to Nash equilibrium which is

usually sub-optimal. Figure 3.2 illustrates the basic difference among centralized,

parallel and distributed optimization.

Parallel 
Optimization

Distributed 
Optimization

Centralized 
Optimization

Decentralized
Data Storage

Decentralized 
Computation

Figure 3.2: An illustration of the evolution from centralized optimization to
parallel optimization and distributed optimization.

We now summarize the above analysis into the following basic steps as the philos-

ophy behind distributed optimization techniques (see Figure 3.3 for the detail):

1) Decouple the problem by introducing auxiliary variables (local copies),

2) Do local operations, such as local update for optimization or local learning (e.g.,

gradient search or orthogonal perturbation) and local communication,

3) Employ certain consensus mechanism to ensure consistency.

The above philosophy only provides a general guideline for developing distributed

optimization techniques. There is much room to be explored beyond the frame-

work in order to achieve specific requirements. For instance, it is not necessary to

separate the local update step (2) and the consensus step (3). Indeed, these two

steps can be coupled into each other and carried out simultaneously. Most existing

distributed optimization techniques follow this idea of combining the consensus

step and local update for optimization step into one single step. In contrast, as

we will see later, the main idea of our approaches proposed in this thesis is the
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Global Variable

Consensus Mechanism

Local 
Copy

...

Asynchronous
Implementation

Data 
Synchronization

Problem
Decoupling

Local 
Operation

Local 
Operation

Local 
Operation

Local 
Copy

Local 
Copy

Agent 1 Agent mAgent 2

...

Figure 3.3: The philosophy behind distributed optimization.

introduction of an extra step for consensus on certain parameters, leading to algo-

rithms or schemes in an augmented form. In so doing, we can effectively separate

the consensus step and the local optimization step, eliminating the steady-state

error which cannot be avoided by most existing algorithms that have one single

combined step. This phenomenon somewhat resembles the PI feedback control

in classical control theory where the integral part, different from the P-control, is

introduced to compensate for the unknown constant disturbance. What is more

interesting and important is that by introducing the extra step for consensus, the

algorithm turns out to be more capable in dealing with time-varying (stochastic)

networks even under asynchronous implementation.
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Chapter 4

Distributed Optimization in

Networked Control Systems: A

Simultaneous Perturbation

Approach

This chapter is concerned with the optimization of the steady-state performance of

large-scale networked dynamic systems in a distributed manner. We first formulate

the problem in Chapter 4.1, followed by some preliminaries for this chapter. The

specific approaches as well as the corresponding stability analysis is then given in

Chapters 4.3 and 4.4. We finally apply the proposed approach into a simulated wind

farm system and compare it with the state-of-the-art technique in Chapter 4.5.

4.1 Problem Statement

4.1.1 Multi-agent dynamics

We consider a large-scale dynamic system consisting of m agents, each of which

can be depicted as follows:ẋi = fi(x, ui)

zi = hi(x), i ∈ V := {1, 2, ...,m}
(4.1)

25



26 4.1. Problem Statement

where xi ∈ Rni is the state of agent i and ui ∈ R is the control input1 while

x = [xT1 , x
T
2 , ..., x

T
m]T ∈ Rn and u = [u1, u2, ..., um]T ∈ Rm denote the state and

control input of the whole system, respectively, zi ∈ R is the cost of agent i, and

fi : Rn × R → Rni and hi : Rn → R are both C1 functions. Note that the

analytical form of hi can be unknown as long as its value can be measured. In

addition, agents are assumed to be loosely coupled through dynamics but could be

strongly coupled in performance. For instance, in wind farm systems, each turbine

can be controlled locally but its power generation depends on others due to wake

effect. To make this precise, we make the following assumptions.

Assumption 4.1. There exists a locally Lipschitz function l : Rm → Rn and a

control law u = ϕ(x, θ), where θ ∈ Rm can be regarded as the reference point for

the system, such that f(x, ϕ(x, θ)) = 0 if and only if x = l(θ).

Assumption 4.2. The system (4.1) is globally asymptotically stable (GAS), uni-

formly in θ = [θ1, θ2, ..., θm]T ∈ Rm.

Remark 4.1. Assumptions 4.1 and 4.2 essentially tell us that the system could be

stabilized in a distributed manner. A simple example satisfying this assumption is

that of coordinated control of wind farm systems where each wind turbine is not

coupled physically with each other and thus can be controlled individually.

4.1.2 Communication network

We assume agents are able to communicate with their immediate neighbors for

collaboration through a communication network described by a graph G = (V , E).

In addition, we model the communication process as a continuous dynamic sys-

tem (see the brief analysis for the rationales in Remark 4.2) and do not take into

account the effect of quantization and packet loss involved in the communication

network. Instead, for brevity, we only consider fixed communication topology2. To

be precise, we make the following assumption on the communication network:

Assumption 4.3. The graph G = (V , E) underpinning the communication network

is fixed, balanced and strongly connected such that we have 1TL = 0 and L1 = 0,

where L is the Laplacian matrix of the graph.

1To simplify the presentation, we assume each subsystem has only one scalar input.
2As we will show in the sequel, the result is, in fact, not limited to fixed networks.
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Remark 4.2. In networked control systems, it has been shown that the controller

designed without considering the network is able to preserve the stability proper-

ties3 of the system presented with network so long as a Lyapunov UGAS protocol

is employed and certain parameter associated with the network, e.g., maximum al-

lowable transmission interval (MATI), is designed to be sufficiently small [73, 74].

4.1.3 Dynamic optimal consensus problem

We consider a distributed optimization problem in which several dynamic agents

are, based on local resources, to collaboratively seek the optimum of the sum of

their individual costs. Each agent is assumed to only have access to local cost

which can be measured in some way (local sensing) and take charge of a subset of

the components of the global decision vector (local action).

Specifically, we focus on dynamic systems that are always operating at its equilib-

rium point or systems exhibiting two-time-scale structure such that the transient

dynamics can be ignored leading to static reference-to-output equilibrium map [33].

It basically means that, given any reference point, the system will be asymptotically

stabilized in its steady-state in a relatively fast way. However, we do not restrict

our attention to this kind of dynamic optimization problems. It will become clear

that the proposed scheme can be also employed to solve static (mathematical) opti-

mization problems in which the true gradient is difficult to obtain explicitly but can

be approximately estimated from measurements, e.g., neural network training [75].

In addition, we assume that the cost of each agent is transferable thus they can

be simply summed up for optimization, resulting in a Pareto-optimal solution (cf.

Remark 4.3). For cases where costs are not transferable, other methods, such as

objective product method, can be employed to account for the fairness issue [76].

The above problem4, which we term dynamic optimal consensus problem (DOCP),

can be formulated as follows:

θ? = arg min
θ∈Rm

m∑
i=1

Ji(θ) (DOCP)

3Here, the stability is preserved in the sense that the nominal system which is GAS and has
no network issue involved will still be semi-globally practically asymptotically stable in certain
parameter, e.g., MATI, when there is network presence in the same system.

4Without loss of generality, we will only consider the minimization problem as maximization
problems can be treated identically.
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where θ = [θ1, θ2, ..., θm]T ∈ Rm is the global decision vector and Ji denotes the cost

function of agent i. As mentioned earlier, for simplicity, we assume θi ∈ R,∀i ∈
V , meaning that each agent is responsible for one-dimensional component of the

global decision vector. In addition, we make the following assumptions on the cost

function as well as the optimization problem:

Assumption 4.4. The cost functions Ji = hi ◦ l(θ), ∀i ∈ V are twice continuously

differentiable, i.e., Ji ∈ C2, ∀i ∈ V and their level sets Ωi
c = {θ ∈ Rn|Ji(θ) ≤

c}, ∀i ∈ V are bounded for all values of c.

Assumption 4.5. There exists a unique solution θ? attaining the Pareto-optimum

(i.e., global optimum) of the DOCP problem.

4.2 Preliminaries

4.2.1 Singular perturbation and averaging theory

Let us consider the following parameterized or perturbed system:

ẋ = f(x, ε) (4.2)

where ε is a small positive number and f : Rn × [−ε0, ε0] → Rn is piecewise

continuous and locally Lipschitz in (x, ε). The goal of the perturbation method

is to exploit the smallness of the perturbation parameter ε [77]. Thus, instead of

studying the perturbed system directly, we carry out the stability analysis on the

nominal or unperturbed system which is obtained by setting ε = 0:

ẋ = f(x, 0) (4.3)

A system exhibiting two-time scale structure can be casted into the following stan-

dard singularly perturbed model via proper coordinate transformation [77]:

ẋ = f(x, z, ε) (4.4a)

εż = g(x, z, ε) (4.4b)

where f and g are continuously differentiable functions in specific domains.
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With the above model, we present the following important definitions and lemma:

Definition 4.1 (USPAS [78]). The parameterized system ẋ = f(t, x, ε) is said to

be uniformly semi-globally practically asymptotically stable (USPAS) on ε if there

exists κ ∈ KL5 and, for each pair of strictly positive numbers (∆, δ), there exists a

real number ε? = ε?(∆, δ) > 0 such that for all initial condition x0 with ‖x0‖ ∈ ∆

and for each ε ∈ (0, ε?), we have ‖x(t)‖ ≤ κ(‖x0‖ , t− t0) + δ, ∀t ≥ t0 ≥ 0.

Definition 4.2 (Average). A locally Lipschitz function ρ : R≥0 × RN → RN , is

said to have an average ρav(x) if there exists a period T such that

ρav(x) =
1

T

∫ t+T

t

ρ(τ, x)dτ, ∀t ∈ R≥0

exists and ∥∥∥∥∫ t+s

t

ρ(τ, x)− ρav(x)dτ

∥∥∥∥ ≤ K, 0 ≤ s ≤ T, ∀t ∈ R≥0

where K is O(1) positive constant.

Lemma 4.1 ([34, 79]). Consider the following two-time scale system:

ẋ = f(t, x, z, ε)

εż = g(t, x, z, ε)
(4.5)

where ε ∈ R is a small positive number. Suppose the following conditions hold:

• the algebraic equation 0 = g(t, x, z, 0) has an isolated root z = h(x, t),

• the functions f , g, h and ∂h
∂x

are locally Lipschitz in (x, z, ε), uniformly in t,

• the reduced system ẋ = f(x, h(x, t), 0) is USPAS on ε, and

• the origin of the boundary-layer system

dy

dτ
= g(t, x, y + h(x, t), 0)

with y = z − h, t = ετ , is GAS, uniformly in (t, x).

Then, the singularly perturbed system is USPAS on ε.

5Refer to [77, Def. 4.2 and 4.3] for the specific definition of KL functions.
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4.2.2 Cooperative and non-cooperative game

In a nutshell, game theory is a study of team decision making problems. There are

two kinds of games according to the way the players play the game, namely non-

cooperative games and cooperative games. In non-cooperative games, each player

takes actions independently in order to minimize its own loss function without

taking into account others’ interests, leading to the outcome of Nash equilibrium.

On the other hand, in cooperative games, players have to sacrifice their own benefits

for achieving global results, yielding Pareto-optimal outcomes.

To be more accurate, we provide the formal definitions of Nash Equilibrium and

Pareto-optimum for an m-player nonzero-sum game (Θ, J) where Θ = Θ1×Θ2 · · ·×
Θm is the set of strategy profiles with Θi denoting the strategy set for player i ∈ V
and J = [J1(θ), J2(θ), ..., Jm(θ)]T is the cost6 for θ ∈ Θ.

Definition 4.3 (Nash Equilibrium [20]). A strategy profile θ? = [θ?1, θ
?
2, ..., θ

?
m]T ∈

Θ with θ?i ∈ Θi, i ∈ V is said to constitute a Nash equilibrium solution for an

m-player nonzero-sum game if the following conditions hold

Ji(θi, θ
?
−i) ≥ Ji(θ

?
i , θ

?
−i), ∀θi ∈ Θi, i ∈ V

where θ?−i denotes the strategies of all other players.

Definition 4.4 (Pareto-Optimum [76]). A strategy profile θ? = [θ?1, θ
?
2, ..., θ

?
m]T ∈ Θ

with θ?i ∈ Θi i ∈ V is said to constitute a Pareto-optimal solution for an m-

player nonzero-sum game if there does not exist another strategy θ ∈ Θ such that

Ji(θ
?) ≥ Ji(θ), ∀i ∈ V and Jk(θ

?) > Jk(θ) for at least one player k ∈ V .

Remark 4.3. The most common way to obtain the Pareto-optimal solution is

to use the weighted sum method, i.e., minimizing
∑N

i=1wiJi(θ), which admits a

unique solution and is sufficient for achieving Pareto optimality [76]. In addition,

if one player can losslessly transfer part of its cost to another player (e.g., they

have a common currency to evaluate their cost), then we can simply optimize their

sum for Pareto-optimality.

6Without loss of generality, we will deal with cost instead of payoff as used in game theory.
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4.3 A Distributed Simultaneous Perturbation Ap-

proach

In this section, we present a distributed simultaneous perturbation approach (D-

SPA). In this scheme, the simultaneous perturbation technique using orthogonal

signals is employed to obtain the pseudo-gradient. In addition, dynamic average

consensus is introduced for distributed implementation of this technique.

4.3.1 Simultaneous perturbation for gradient extraction

We show that employing orthogonal perturbation signals allows us to extract the

gradient information for a given performance function.

Definition 4.5 (Orthogonal Perturbation Signals). A number of C1 signals µ =

[µ1(t), µ2(t), ..., µm(t)]T are said to be orthogonal perturbation signals if there exists

a period7 T such that, for any t ≥ 0, the following conditions are satisfied:

1

T

∫ t+T

t

µi(τ)2dτ = a2,
1

T

∫ t+T

t

µi(τ)dτ = 0, (4.6a)

1

T

∫ t+T

t

µi(τ) · µj(τ)dτ = 0, ∀i 6= j ∈ V , (4.6b)

a = O(
1

T
), ‖µi(t)‖ = O(a) ∀i ∈ V . (4.6c)

where “a” is the root mean square (RMS) amplitude of the signal µi, i ∈ V .

Remark 4.4. Although we focus on deterministic signals, stochastic signals are

also good candidates for perturbation [80, 81].

Lemma 4.2 (Approximate Gradient System). Consider the following system

θ̇ = −δ[ψ(θ + µ) + C]⊗ µ (4.7)

where ψ : RN → R is a C2 function, C is some constant and µ is the orthogonal

perturbation signals (cf. Definition 4.5). Then, for any given arbitrary compact

7Here “T” refers to the least common multiple of the time periods of the perturbation signal.
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domain Ω and sufficiently small δ and a, the system can be rewritten as a gradient

system with perturbation as follows:

θ̇av = −a2δ [∇ψ(θav) +O(a+ δ)] (4.8)

where ∇ denotes the differential operator.

Proof: See Appendix A.

Remark 4.5. The correlation is made between the performance function and the

local perturbation signal, leading to local learning. This, in fact, offers a natural

way for distributed implementation.

4.3.2 Dynamic average consensus

Different from conventional consensus, dynamic average consensus is trying to track

in real-time the average of input references [82, 83]. The dynamic average consensus

protocol for each agent i ∈ V is designed as follows (cf. Section 3.2):

ẏi = −β
∑
j∈Ni

lijyj + żi (4.9)

where yi is the introduced auxiliary variable for agent i and lij is the weight that

agent i use to incorporate the data from agent j ∈ Ni with Ni denoting the index

set of the neighbors of agent i, or, in another form8:

ζ̇i = −β
∑
j∈Ni

lijyj

yi = ζi + zi

(4.10)

which can be further written in a compact form for the whole system as follows:

ζ̇ = −βL(ζ + z)

y = ζ + z
(4.11)

where z is the exogenous reference input of each agent.

8This form is different from (4.9) in that it can account for non-differentiable reference inputs.
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Lemma 4.3 (Conservation Property I). Consider the system (4.11). Let Assump-

tion 4.3 hold. Then,
∑

i∈V yi(t)−
∑

i∈V zi(t) = C, ∀t ≥ 0, where C =
∑

i∈V ζi(0).

By pre-multiplying both sides of (4.11) by 1T and knowing that 1TL = 0, we

can immediately obtain the result since
∑

i∈V ζi(t) =
∑

i∈V ζi(0) and
∑

i∈V yi(t) =∑
i∈V ζi(t) +

∑
i∈V zi(t), ∀t ≥ 0. This lemma essentially tells us that the instan-

taneous sum of the state of all agents is always the same as that of the reference

inputs. This conservation property is important in that it allows us to track the

time-varying average of the reference inputs.

4.3.3 The general overall scheme

The D-SPA scheme intertwines the above simultaneous perturbation technique and

dynamic average consensus protocol by introducing certain auxiliary variables. Fig-

ure 4.1 shows the basic scheme for a static reference-to-output map. The corre-
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Figure 4.1: A scheme of distributed simultaneous perturbation approach

sponding continuous-time dynamic system of the scheme is given as follows:

ζ̇ = −βL(ζ + J(θ̂(t) + µ(t))) (4.12a)

˙̂
θ = −α(ζ + J)� µ(t) (4.12b)

where β and α are both O(1) positive constants which encode the speed of the

average-consensus process and the optimum seeking process respectively, θ̂ the

estimated optimum, ζ = [ζ1, ζ2, ..., ζm]T the introduced auxiliary variable, J =
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[J1, J2, ..., Jm]T the cost9 of each subsystem, µ the orthogonal perturbation signal

(cf. Definition 4.5) and L the Lapalacian Matrix.

4.4 Specific Schemes and Stability Analysis

4.4.1 Basic scheme

In this section, we establish the stability property of the proposed scheme taking

into account the physical dynamics (4.1). We first provide the stability analysis

based on the simplified version of the scheme that do not have high and low pass

filters involved in the scheme as shown in Figure 4.2.
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Figure 4.2: A basic scheme of distributed simultaneous perturbation approach

The overall dynamics corresponding to the basic scheme can be depicted as follows:
ẋ = f(x, ϕ(x, θ̂ + µ))

ζ̇ = −βL(ζ + h(x))

˙̂
θ = −α(ζ + h(x))� µ

(4.13)

Before preceding to our main results, we give the following lemma which guarantees

the preservation of stability (cf. footnote 3) between a parameterized system and

its corresponding nominal system.

9The cost refers to the one induced by the operation of the system working at steady-state.
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Lemma 4.4. Consider a parameterized system ẋ = φ(t, x, ε), where φ : R≥0×Rn×
R → Rn and its partial derivatives with respect to (x, ε) are locally Lipschitz in

Rn×R, uniformly in t. Suppose that the nominal system ẋ = φ(t, x, 0) is uniformly

globally asymptotically stable (UGAS), then the original system is USPAS on ε.

Proof: See Appendix A.

Theorem 4.1. Suppose that Assumptions 4.3, 4.4 and 4.5 hold.Let α = αKwδ and

δ = O(w), where w = 1
T

is the base frequency and αK is O(1) positive constant.

Then, the system (4.12) is USPAS on [a] with respect to the Pareto-optimum of

the DOCP problem, where ‘a’ is the RMS amplitude of the perturbation signal.

Proof. Consider the dynamic system (4.12). Let τ = wt be the new time variable

and µ̄(τ) = µ(t) the scaled signal with unit time period. Since α = αKwδ, (4.12)

can be rewritten as follows

w
dζ

dτ
= −βL(ζ + J(θ̂ + µ̄(τ))) (4.14a)

dθ̂

dτ
= −δαK(ζ + J(θ̂ + µ̄(τ)))� µ̄(τ) (4.14b)

When w is small, the above system exhibits a two-time-scale structure and is

thus ready to be analyzed using singular perturbation theory [77]. Letting y =

ζ + J(θ̂ + µ̄) be the new state and knowing that µ̄ is a C1 function, (4.14a) can be

rewritten as (note that τ = wt)

dy

dt
= −βLy + w∇J(θ̂ + µ̄) ·

(
dθ̂

dτ
+
dµ̄(τ)

dτ

)
(4.15)

where ∇J denotes the derivative of J(·). Setting w = 0 gives the following

boundary-layer system:
dy

dt
= −βLy (4.16)

Let V1 = 1
2
yTy be the Lyapunov function of the system. Then, we have

V̇1 = −βyTLy = −β
2

(yTLy + yTLTy)≤ −βλ2(Ls) ‖y‖ < 0, ∀y ∈ {y|Ly 6= 0}

= 0, ∀y ∈ {y|Ly = 0}
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where Ls = L+LT

2
and λ2(Ls) is the algebraic connectivity of the communication

graph which is positive by Assumption 4.3 [24]. Hence, by Lasalle’s theorem, the

system will exponentially converge to the invariant manifold {y|Ly = 0}, uniformly

in θ̂+ µ̄. In addition, according to Conservation Property I in Lemma 4.3, we have

N∑
i=1

yi =
N∑
i=1

Ji(θ̂ + µ̄) + C

where C =
∑N

i=1 yi(0). Thus, let ȳ = 1T y
N

and J̄ = 1T J
N

be the mean value

of the entries of y and J respectively and C̄ = 1T y(0)
N

, we obtain the invariant

manifold (i.e., the unique isolated root)

y? = ȳ ⊗ 1 =
(
J̄(θ̂ + µ̄) + C̄

)
⊗ 1 (4.17)

on which the motion is carried out following the slow dynamics described by the

reduced model (4.14b).

Now, let us consider the reduced system:

dθ̂

dτ
= −δαK

[(
J̄(θ̂ + µ̄) + C̄

)
⊗ 1
]
� µ̄

which is equivalent to

dθ̂

dτ
= −δαK

(
J̄(θ̂ + µ̄) + C̄

)
⊗ µ̄. (4.18)

Invoking Lemma 4.2 and knowing that δ = O(w) and a = O(w) (cf. Definition 4.5),

we obtain the following averaged model in σ = a2δτ time scale:

dθ̂av

dσ
= −αK

(
∇J̄(θ̂av) +O(w)

)
(4.19)

Let V2 = J̄(θ̂av)− J̄(θ?), where θ? is the Pareto optimum of the DOCP problem, be

the Lyapunov function for the nominal gradient system
˙̂
θav = −αK∇J̄(θ̂av). Then,

we have

V̇2 = ∇J̄(θ̂av)
˙̂
θav = −αK

∥∥∥∇J̄(θ̂av)
∥∥∥2

≤ 0

with equality if only if ∇J̄(θ̂av) = 0. Thus, by Assumption 4.4 and Lasalle’s

theorem, the nominal system of (4.19) is UGAS. In addition, knowing that J̄

is a C2 function from Assumption 4.4, by Lemma 4.4, we claim that the original
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averaged system (4.19) is USPAS on [w] and so is the original reduced system (4.18).

Further, since the boundary-layer system (4.16) is GAS, uniformly in θ̂+ µ̄ and the

dynamic functions (4.15) and (4.14b) as well as their first derivatives are locally

Lipschitz in (θ̂, y, w), it follows from Lemma 4.1 that the system (4.12) is USPAS

on [w] and, recalling that a = O(w), is thus also USPAS on [a] with respect to the

Pareto-optimum of the DOCP problem.

Remark 4.6. It is important to note that the stability result obtained using sin-

gular perturbation techniques does not provide much guidance in improving the

convergence performance of the scheme. For instance, a proper tuning of certain

parameters, such as “α”, will increase the speed of convergence [34].

Remark 4.7. Note that the assumption that the feedback gain α is chosen to be

the same for all subsystems is merely for simplicity. Indeed, it is not difficult to

show that the scheme can still be guaranteed to converge to the neighborhood of

Pareto-optimum with different feedback gains for different agents, which is cru-

cial considering the heterogeneous property of subsystems in practice, making it

possible for asynchronous implementation as well.

Theorem 4.2. Suppose all the assumptions of theorem 4.1 hold. In addition,

Assumptions 4.1 and 4.2 are satisfied. Let α = αKwδ and δ = O(w). Then, the

dynamic system (4.1), under the proposed basic D-SPA scheme, is USPAS on [a]

with respect to the Pareto-optimum of the DOCP problem.

Proof. Consider the overall system (4.13). Let τ = wt be the new time variable,

µ̄(τ) = µ(t) the scaled signal and y = ζ + h(x) the new state. Since α = αKwδ,

the overall system (4.13) can be rewritten in singularly perturbed form as follows:

w
d

dτ

[
x

y

]
=

[
f(x, ϕ(x, θ̂ + µ̄(τ)))

−βLy +∇h · f

]
(4.20a)

dθ̂

dτ
= −δαKy � µ̄(τ) (4.20b)

where ∇h denotes the derivative of h(·). Then, let us first consider the following

boundary-layer system:

dx

dt
= f(x, ϕ(x, θ̂ + µ̄(τ))) (4.21a)

dy

dt
= −βLy +∇h(x) · f(x, φ(x, θ̂ + µ̄(τ))) (4.21b)
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Similar with the proof in Theorem 4.1, we can show that the nominal system
dy
dt

= −βLy is exponentially stable with respect to the isolated root of (4.21b), i.e.,

y? = [h̄(x) + C̄]⊗ 1, where h̄ = 1T h
N

. Since h and f are both C1 functions, ∇h · f is

bounded for any given bounded x− x?, where x? = l(θ̂ + µ̄) is the isolated root of

(4.21a). Thus, it is not difficult to show that the subsystem (4.21b) is, with x− x?

viewed as the input, input-to-state stable (ISS) [77, Lem. 4.6]. In addition, by

Assumption 4.2, we know that the physical system (4.21a) is GAS, uniformly in

θ̂ + µ̄, it follows that the system (4.21) is GAS, uniformly in θ̂ + µ̄ [77, Lem. 4.7].

Then, “freezing” [x, y]T at its equilibrium leads to the following reduced system

(Recall that J̄ = h̄ ◦m):

dθ̂

dτ
= −δαK

[(
J̄(θ̂ + µ̄) + C̄

)
⊗ 1
]
� µ̄ (4.22)

which is already shown from Theorem 4.1 to be USPAS on [w]. Further, it is not

difficult to show that the dynamic functions in (4.20) and their first derivatives

are locally Lipschitz in (x, y, θ̂, w). Thus, by Lemma 4.1, we conclude that the

system (4.13) is USPAS on [w] and, recalling that a = O(w), is thus also USPAS

on [a] with respect to the Pareto-optimum of the DOCP problem.

4.4.2 High-order scheme

In this section, we will introduce the high-order simultaneous perturbation scheme

which incorporates the low pass and high pass filters as shown in Figure 4.3.
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Figure 4.3: A high-order scheme of distributed simultaneous perturbation ap-
proach
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The overall dynamics of the high-order scheme can be depicted as follows:

ẋ = f(x, ϕ(x, θ̂ + µ))

ζ̇ = −βL(ζ + h(x))

˙̂
θ = −αξ

ξ̇ = −wlξ + wl(ζ + h(x)− η)� µ

η̇ = −whη + wh(ζ + h(x))

(4.23)

where wl and wh denote the cut-off frequencies of the low pass filter and the high

pass filter respectively. As we will show in our proof that the filters introduced in

the scheme will not impact the stability of the system but enhance the convergence

performance, e.g., attenuating the output oscillation [34].

Theorem 4.3. Suppose all the assumptions of theorem 4.2 hold. Let wl = wLwδ,

wh = wHwδ, α = αKwδ and δ = O(w), where wL, wH and αK are O(1) positive

constants. Then, the system (4.1), under the proposed high-order D-SPA scheme,

is USPAS on [a] with respect to the Pareto-optimum of the DOCP problem.

Proof. Consider the dynamic system (4.23). Let τ = wt be the new time vari-

able, µ̄(τ) = µ(t) the scaled signal and y = ζ + h(x) the new state. Since

wl = wLwδ,wh = wHwδ, α = αKwδ, (4.23) can be rewritten in singularly per-

turbed form as follows:

w
d

dτ

[
x

y

]
=

[
f(x, ϕ(x, θ̂ + µ̄(τ)))

−βLy +∇h · f

]
(4.24a)

d

dτ


θ̂

ξ

η

 = δ


−αKξ

−wLξ + wL(y − η)� µ̄
−wH(η − y)

 (4.24b)

Thus, fixing [x, y]T at its equilibrium leads to the following reduced system:

d

dτ


θ̂

ξ

η

 = δ


−αKξ

−wLξ + wL
(
(J̄ + C̄)⊗ 1− η

)
� µ̄

−wHη + wH

(
J̄(θ̂ + µ̄) + C̄

)
⊗ 1

 (4.25)

Using the same technique as in the proof of Lemma 4.2 and knowing that
∫ 1

0
η �
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µ̄(σ)dσ = 0 and
∫ 1

0
J̄(θ̂ + µ̄(σ)) ⊗ 1dσ = J̄(θ̂) ⊗ 1 + O(a2) by first-order approxi-

mation, it is not difficult to show that the above system (4.25) can be represented

as an averaged system with perturbation:

d

dτ


θ̂av

ξav

ηav

 = δ


−αKξav

−wLξav + wLa
2
(
∇J̄(θ̂av) + r

)
−wHηav + wH

(
J̄(θ̂av) + C̄

)
⊗ 1 + r

 (4.26)

where r = O(w) is the perturbation term obtained by knowing a = O(w), δ =

O(w). The above nominal system can be rewritten in σ = δτ time scale as follows:

d

dσ

[
θ̂av

ξav

]
=

[
−αKξav

−wLξav + wLa
2∇J̄(θ̂av)

]
(4.27a)

dηav

dσ
= −wHηav + wH

(
J̄(θ̂av) + C̄

)
⊗ 1 (4.27b)

Let V3 = J̄(θ̂av)− J̄(θ?) + 1
2
αK
wLa2 ξ

avT ξav be the Lyapunov function for the subsys-

tem (4.27a). Taking the derivative along the trajectory yields

V̇3 = −αK∇J̄(θ̂av)
T
ξav +

αK
a2
ξavT (−ξav + a2∇J̄(θ̂av))

= −αK
a2
ξavT ξav ≤ 0

with equality if only if ξav = 0. Thus, by Assumption 4.4 and Lasalle’s theorem,

the system (4.27a) is UGAS. In addition, letting η̃av = ηav − (J̄(θ?) + C̄)⊗ 1, the

system (4.27b) can be rewritten as

dη̃av

dτ
= −wH η̃av + wH

(
J̄(θ̂av)− J̄(θ?)

)
⊗ 1 (4.28)

Since J̄ is a C2 function thus locally Lipschitz in its argument, the value of J̄(θ̂av)−
J̄(θ?) is bounded for any given bounded “θ̂av − θ?”. It is obvious that the origin of

the unforced system dη̃av

dτ
= −wH η̃av is globally exponentially stable, thus we claim

that the nominal subsystem (4.27b), with “θ̂av − θ?” viewed as input, is ISS [77,

Lem. 4.6]. Further, recalling that the system (4.27a) is UGAS, it follows that the

nominal averaged system (4.27) is UGAS [77, Lem. 4.7] .

Moreover, since J̄ is a C2 function, by Lemma 4.4, we claim that the original aver-

aged system (4.26) is USPAS on [w] and so is the original (reduced) system (4.25).
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As shown before, according to Assumption 4.2, the boundary-layer system (4.24a)

is GAS with respect to the isolated root x? = l(θ̂ + µ̄), y? = [J̄(θ̂ + µ̄) + C̄] ⊗ 1,

uniformly in θ̂ + µ̄. Further, it is not difficult to show that the functions in (4.24)

are locally Lipschitz in their arguments. Thus, by Lemma 4.1, we conclude that

the system (4.1) under the high-order D-SPA scheme (4.23) is USPAS on [w] and,

recalling that a = O(w), is thus also USPAS on [a] with respect to the Pareto-

optimum of the DOCP problem.

Remark 4.8. As we will see in the proof of the above theorem, there are multiple

time-scales involved in the above dynamic system (4.23). Specifically, we have the

following time-scales:

1) fastest : the plant and the dynamic average consensus filter;

2) medium: the probing frequencies;

3) slow : the high/low pass filters in the scheme.

Remark 4.9. The interplay of several perturbation parameters is very complicated

and the result is very limited especially for semi-globally practically asymptotically

stable systems [34]. To circumvent this difficulty, we introduce the conditions

a = O(w) and δ = O(w) in the stability analysis to make the system amenable to

using techniques under the framework of scalar perturbation.

4.4.3 Distributed extremum seeking control

In this section, we show that when we choose sinusoidal signal as the perturbation

signal, which is the most popular choice, we can come up with a distributed version

of multivariable extremum seeking control [16, 35], termed D-ESC. In particular,

we set µ(t) = a[sin(w1t), sin(w2t), ..., sin(wmt)]
T and, then, we can easily show that

these perturbation signals are mutually orthogonal as follows:

δjk =
wg
2π

∫ 2π
wg

0

sin(wjt) sin(wkt)dt =

0, wj 6= wk,

1
2
, wj = wk.

∀i, k ∈ V . (4.29)

where wg is the greatest common divisor of all the frequencies wi of chosen signals.

Remark 4.10. In the above analysis, we only consider first-order approximation of

the gradient. However, if certain additional orthogonality conditions hold, higher-

order approximation with more accuracy can be achieved [75].
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4.5 Application to Wind Farm Systems

4.5.1 Dynamic modeling and wake effect of wind farms

We consider the control parameter of a wind turbine as the axial induction factor,

the fractional decrease between the velocity of the upstream wind and downstream

wind seen by the turbine, which can be controlled by properly tuning the blade

pitch angle and the tip speed ratio of rotors as shown in Figure 4.4.

Pitch
 Controller

Torque
 Controller
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Sensors

Axial Induction 
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Torque
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Wind

Wind
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τ

Ref

t
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Figure 4.4: Illustration of the control of wind turbines.

The Park model is one of the most popular wake models which give the velocity

profile of wind farm [84, 85]. Figure 4.5 illustrates the interaction between an up-

stream turbine T1 and a downstream turbine T2 operating in a free stream velocity

V∞. We can see from the figure that the axial induction factor a1 of the upstream

turbine is coupled into the power generation of the downstream turbine due to the

wake effect induced by the overlapping area Aoverlap1→2 of these two wind turbines.

In particular, let us consider a wind farm system consisting of multiple wind tur-

bines that are densely deployed. Then, according to the Park model, the effective

wind velocity seen by turbine i can be calculated as

Vj(a) = V∞(1− δVj(a))

where a = [a1, a2, ..., am]T denotes the axial induction factors of all turbines and

δVj(a) is the aggregated velocity deficit created by all the upstream turbines of
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Figure 4.5: Illustration of the wake effect of wind turbines.

turbine i which can be expressed as

δVj(a) = 2

√√√√ ∑
i∈V:xj<xi

(
ai

(
Di

Di + 2kxij

)2 Aoverlapi→j

Ai

)

with Ai being the area swept by the blades of turbine i, Aoverlapi→j the area of overlap

between the wake created by turbine j and the disc created by the blades of turbine

i, xij the distance between turbine i and turbine j, k the roughness coefficient which

can be determined empirically for specific environment and Di(xij) = Di + 2kxij

the diameter of the wake induced by turbine i at a distance xij.

The power generated by turbine i can be thus calculated as

Pi(a) =
1

2
ρAiCP (ai)Vi(a)3

where ρ is the air density and CP is the power efficiency coefficient which can be

expressed as CP (ai) = 4ai(1− ai)2.

4.5.2 Coordinated control of wind farm systems

We apply our proposed approach to a simulated wind farm system. Coordinated

control of wind farms has been receiving considerable attention recently for en-

ergy maximization [84–87]. By taking into account the aerodynamic interaction
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among wind turbines, we can have an energy gain of up to 25% under certain wind

conditions with respect to the greedy policy where each turbine operates individu-

ally [84]. In the simulation, we consider an offshore wind farm consisting of 4× 3

wind turbines as illustrated in Figure 4.6.

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12 W

N

E

S

Wind

7D

10D

Figure 4.6: The layout of a wind farm consisting of 4x3 wind turbines. This
layout resembles the Horns Rev wind farm constituted by Vestas V80 2MW
turbines with a diameter D of 80 meters. The turbines are spaced evenly with
an interval of 7 turbine diameters in north and east direction and 10 diameters

in north-east direction.

We consider the quasi-steady-state model (cf. Equation (4.25)). That is, we do

not consider the dynamics of wake traveling and wind turbines10 but assume there

is already a distributed controller properly designed to make sure the wind farm

system is asymptotically stable for any given setpoint in certain domain (e.g.,

[0.1,0.5]) for axial induction factor [88]. In addition, we assume each turbine can

communicate with its immediate neighboring turbines and the Laplacian matrix L

underpinning the communication network is designed as follows11:

lij =

−1
5
, j ∈ Ni and j 6= i

|Ni|
5
, j = i

(4.30)

10Note that the simulation time may thus not exactly represent the physical time.
11Note that in our simulation the dynamic average consensus filter is properly initialized to

make sure its output be close to zero for better convergence performance.
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(a) decentralized scheme (β = 0)
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(b) distributed scheme (β = 0.5)
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(c) distributed scheme (β = 5)
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(d) centralized scheme (β =∞)

Figure 4.7: Time History of the overall power generation of 4x3 windfarm
under south wind with different speeds of the consensus process. It shows that
there will be no coordination among turbines when β = 0, leading to Nash
Equilibrium, while we can achieve Pareto optimum when the consensus process
is instantaneous, corresponding to β =∞. In practice, the outcome is somewhere

in-between when β is certain positive constant.

The model parameters for the wind farm were set as k = 0.04, ρ = 1.225(kg/m3)

and U∞ = 8(m/s) in all wind directions. In the D-SPA scheme, we chose sinu-

soidal signal as the perturbation signal (cf. Section 4.4.3) and the frequencies were

designed as [11, 12, ..., 22] · 10−2 rad/s for each turbine respectively.

We used the high-order scheme with wl = wh = 0.01 rad/s in the simulation due

to its better convergence performance12. The simulation was conducted for west,

south and northeast wind conditions having the most potential of energy gain. To

show the effectiveness of the proposed scheme, the results are compared with the

greedy policy (θ = 1/3) and optimal policy.

12As a rule of thumb, the cut-off frequency of high/low-pass filters is chosen around 1/10 of
the least probing frequency.
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(a) Turbine 1
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(b) Turbine 2
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(c) Turbine 3
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(d) Turbine 4

Figure 4.8: Trajectories of the axial induction factor of Turbines 1, 2, 3 and
4 under west wind. It shows that each turbine manages to work at the best

operating point corresponding to the optimal policy.
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(a) Northeast Wind
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(b) West Wind

Figure 4.9: Time History of the overall power generation of the 4x3 windfarm
under (a) north-east wind and (b) west wind. The figures show that the proposed
scheme with the same parameter setting is able to deal with the topology change

of interactions among wind turbines due to the change of wind direction.
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Figure 4.7 demonstrates that the coordination level of turbines is dependent on

the speed of the consensus process. The faster the consensus process being carried

out, the higher is the achieved efficiency of the wind farm power generation. The

outcome of the scenario without communication (β = 0) corresponding to greedy

policy is of Nash Equilibrium while the exact Pareto optimum can be attained using

optimal policy corresponding to the consensus process being instantaneous (β =

∞). However, in real applications, the outcome will be somewhere in between as

it needs some time for the consensus process to converge. This illustrates that

the communication part in networked control systems plays a key role not only for

stability but also for optimization.

Figure 4.8 shows the trajectories of the axial induction factor of selected wind

turbines when the wind farm is under west wind direction and controlled under

the D-SPA scheme with relatively fast consensus process β = 5. As can be seen

from the figure, each turbine is converging to the operating point corresponding

to the optimal policy. However, there is still some gap due to the inability of the

dynamic average process to track the varying perturbation signals in real time.

This can be mitigated by choosing perturbation signals with low frequency but

doing so will lead to larger oscillation in output [35].

Figure 4.9 illustrates the power efficiency achievement using the D-SPA scheme

with the same parameter setting for north-east wind and south wind respectively.

It essentially indicates that the proposed scheme does not require the information

of the topology of aerodynamic interactions of wind turbines and thus is robust to

the topology change due to the variation of the wind direction. However, it suffers

from the drawback of slow convergence speed common to model-free approaches.

4.5.3 Comparisons with state-of-the-art techniques

The proposed approach belongs to the family of the “map-free” MPPT algorithms

which can seek the optimum without knowing much knowledge of the reference-

output map. Most of the conventional MPPT algorithms are centralized and not

readily transferable to distributed version as the topology of the system will come

into play. To the best of our knowledge, there are few distributed MPPT ap-

proaches in the existing literature. In particular, [85] proposed a GA-MMPT ap-

proach which requires one to explicitly deal with the topology. Thus, it is not
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practical considering that the wind condition is changing constantly. Another ap-

proach (GT-MPPT) proposed by [84] is based on random search, which is already

shown to converge slowly [85]. As with most ES-based approaches, our approach

can be applied without modifications to the existing system so long as there exists

a stabilizing control law [88]. In addition, since we use simultaneous perturbation

technique, our algorithm does not need synchronization for implementation. In

contrast, the conventional Perturb and Observe (P&O) MPPT algorithm should

be properly synchronized and carried out in a predefined sequence (This somewhat

resembles centralized information), making it complicated for practical implemen-

tation. Moreover, since we employ consensus mechanism for coordination, it will

be more robust to the topology changes of the system as compared to the existing

distributed MMPT approaches where only certain topology is considered and this

is evident in our simulation for different wind directions.
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Figure 4.10: Evolution history of the normalized power generation of GA-
MMPT (square) and D-SPA with three parameter settings: (1) a = 0.02, α =
50, nβ = 2 (diamond) (2) a = 0.02, α = 50, nβ = 4 (cross) and (3) a = 0.02, α =
50, nβ = 16 (circle). It shows that the proposed D-SPA approach is able to
obtain more wind energy so long as there is enough number of inner loops of

consensus being carried out in each iteration.

Furthermore, we have also compared the performance with the existing state-of-the-

art distributed MPPT approach (GA-MPPT) [85] in terms of convergence speed

and accuracy. The simulation result is shown in Figure 4.10 which plots the nor-

malized overall power generation of the wind farm with respect to iterations. In

order to make a fair comparison, each round of the update of the control variables

is regarded as an iteration and only a peer-to-peer network is allowed for informa-

tion sharing. In addition, a discrete-time counterpart13 of the proposed approach

13 We choose ∆t = 0.1 as the time interval for discretization.
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is also developed (cf. Equation (4.31)) for comparison. It should be noted that the

parameter β in the proposed continuous scheme will become the number of inner

loop (denoted as nβ) of consensus being carried out within each step of perturba-

tion in the discrete counterpart. The bigger the value of β, the higher the number

of inner loops of consensus are executed in each iteration.

y(k + 1) = W nβ(y(k) + ∆J(k)) (4.31a)

θ̂(k + 1) = θ̂(k) + α · (y(k + 1)− y(k))� µ(k) (4.31b)

where ∆J(k) = J(θ̂(k) + µ(k))− J(θ̂(k)) is the difference between the power gen-

eration before and after perturbation, µ(k) = a[sin(w1k), sin(w2k), ..., sin(wmk)]T

the perturbation signals for each turbine, α the stepsize of gradient search, y(k)

the auxiliary variable and W = I − 0.1L the weight matrix designed for average

consensus. In our simulation, we consider the same wind farm system under South

wind as before. The parameter setting for GA-MPPT is K = 0.01, which yields fast

convergence without much overshooting. For our algorithm, we consider three sce-

narios with parameter settings: a = 0.02, α = 50, nβ = 2, a = 0.02, α = 50, nβ = 4

and a = 0.02, α = 50, nβ = 16 respectively. The probing frequencies of the per-

turbation signals are chosen as the same with the previous continuous example for

all scenarios. It follows from Figure 4.10 that GA-MPPT has a slightly faster and

smoother convergence property due to the simplicity of its perturbation technique

resulting in more accurate gradient estimation. However, as mentioned above, this

requires perfect synchronization among modules which is not practical or requires

“centralized control”. We can also see from the figure that it will get stuck at a

distance away from the optimal point, which is expected as it does not incorporate

the information of power generation of multi-hop neighboring turbines on which

they have impact. In contrast, our approach is able to extract more wind energy so

long as enough number of inner loops of consensus are carried out in each iteration.

4.6 Summary

In this chapter, we have proposed a distributed simultaneous perturbation approach

for optimizing the steady-state performance of large-scale networked dynamic sys-

tems. The approach employs the simultaneous perturbation technique as well as

a consensus mechanism, yielding a distributed model-free technique which has the
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potential to accommodate slowly changing environments. We have also proved the

convergence of the scheme to the neighborhood of Pareto optimum using singular

perturbation and averaging techniques. In the simulation of coordinated control

of a wind farm system and the comparison with existing state-of-art distributed

MPPTs, we have verified that, with proper tuning of the parameters under design,

the proposed scheme is able to improve the energy efficiency to the extent that in-

creases with the speed of the consensus process. The proposed scheme is expected

to be applicable to other large-scale dynamic systems for which the reference-to-

output map is hard to obtain and distributed implementation is necessary.
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Coordinated Estimation

51





Chapter 5

Distributed Optimization in

Sensor Networks: Fixed Networks

and Synchronous Implementation

This chapter deals with the distributed estimation problem in large-scale sensor

networks where the network is fixed and the algorithm is synchronous. Two basic

algorithms are proposed in this chapter to solve the problem. We state the general

problem of our interest in Section 5.1 and provide the preliminaries that are crucial

in developing the proposed algorithms in Section 5.2. We then investigate the

convergence performance of the proposed algorithms in Section 5.3 and 5.4 and

finally apply the algorithms to sensor fusion problems in Section 5.5.

5.1 Problem Statement

We consider the distributed estimation problem involved in large-scale sensor net-

works where a large number of sensors are collaborating with each other to estimate

certain parameters, e.g., temperature of a room or position of a source. This kind

of estimation problem can be formulated as the following optimization problem

53
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which, indeed, is equivalent to the problem (DOP):

min
x∈Rmd

f(x) =
m∑
i=1

fi(xi)

s.t. xi = xj, ∀i, j ∈ V
(EDOP)

where xi ∈ Rd is the local estimate of agent i about the global optimum θ? while

x = [xT1 , x
T
2 , ..., x

T
m]T ∈ Rm×d is the collection of the estimates of all agents and

fi : Rd → R is the local objective function known only to agent i.

For the EDOP problem to be feasible, we make the following assumption on the

existence of the optimal solution:

Assumption 5.1. There exists an optimum x? = 1 ⊗ θ? to the EDOP problem

such that f ? := f(x?) = minθ∈Rd F (θ).

Remark 5.1. In the sequel, we only consider the case d = 1 since the analysis for

the case d > 1 is similar except for that we need to deal with Kronecker product

and the results developed can be easily extended to multi-dimensional cases. In

addition, once it is clear, we will suppress the subscript of variables for brevity.

5.2 Preliminaries

5.2.1 Monotone operator, saddle point and Fenchel’s dual

An operator T on an Euclidean Space H is a set-valued mapping, i.e., T : H → 2H

and the graph of T is defined as gra T = {(x, y) ∈ H ×H|y ∈ Tx}.

Definition 5.1. An operator T is said to be monotone if

∀(x, y), (x′, y′) ∈ gra T 〈x− x′, y − y′〉 ≥ 0,

and strongly monotone if

∀(x, y), (x′, y′) ∈ gra T 〈x− x′, y − y′〉 ≥ α ‖x− x′‖2
.

A monotone operator is called maximal if there is no monotone operator T ′ such

that gra T ⊂ gra T ′, e.g., ∂f of a function f ∈ Γ(H) is maximally monotone.
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Further, the resolvent of T is defined as JτT = (I + τT )−1.

Definition 5.2 (Proximity Operator). A resolvent operator with τ > 0 is called

as the proximity operator of a convex functional f and is defined as follows:

proxτf (v) = arg min
x∈H

{f(x) +
1

2τ
‖x− v‖2}.

Remark 5.2. The proximity operator plays a key role in proximal point algorithms

which subsume many well known algorithms, such as the well-known ADMM and

augmented Lagrangian method.

Definition 5.3 (Saddle Point). A pair (x?, y?) is said to constitute a saddle point

if the following condition holds

ψ(x?, y) ≤ ψ(x?, y?) ≤ ψ(x, y?),∀(x, y) ∈ D (5.1)

where ψ(x, y) is the Lagrangian.

Definition 5.4 (Fenchel’s dual). Let f ∈ Γ(H) : H → R ∪ {±∞} be a convex

functional. Then, its convex conjugate (Fenchel’s dual) f ∗ is defined as follows:

f ∗(y) := sup
x∈H
{〈x, y〉 − f(x)}

where y is the dual variable.

5.2.2 Bregman distance and G-space

Definition 5.5 (Bregman Distance). Consider a convex functional f : H → R ∪
{±∞}, the Bregman distance between x ∈ H and x′ ∈ H is defined as

Dq
f (x, x

′) = f(x)− f(x′)− 〈q, x− x′〉

where q ∈ ∂f(x′) is a subgradient evaluated at x′.

Bregman distance has three basic properties: D(x, y) ≥ 0, D(x, y) 6= D(y, x) and

D(y, x) ≥ D(z, x) if z ∈ [x, y]

Remark 5.3. The Bregman distance is not the distance in usual sense but performs

a similar function as distance, e.g., in the Bregman proximal point algorithm, where

the Euclidean distance is replaced with Bregman distance.
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Definition 5.6 (G-space and Induced Norm). Given a symmetric positive definite

matrix G, a G-space as well as its induced norm are defined as follows: 〈x, x′〉G =

〈Gx, x′〉 and ‖x‖G =
√
〈Gx, x〉, ∀x, x′ ∈ H.

5.2.3 Some basic relations

The following relations will be frequently used and crucial to our subsequent proofs

in the convergence analysis in Section 5.4.2 and Section 6.4.3.

Proposition 5.1. Consider two vectors x, y ∈ Rm and an orthogonal projection

matrix Q ∈ Rm×m. Let z̄ = 11T

m
z and z̃ = z − z̄, z = x, y. Then, we have

(i) xT ȳ = x̄T ȳ;

(ii) x� y − x̄� ȳ = x� ỹ + x̃� ȳ;

(iii) x� y = x̄� ȳ + x̃� ỹ;

(iv) 1√
m

(‖x̄‖ ‖ȳ‖ − ‖x̃‖ ‖ỹ‖) ≤ ‖x� y‖ ≤ 1√
m
‖x‖ ‖y‖;

(v) Q2 = Q and ‖Qx‖ ≤ ‖x‖.

Proof. See Appendix B.

5.3 Distributed Bregman Forward-Backward Split-

ting Algorithm

We present a distributed algorithm, termed Distributed Forward-Backward Breg-

man Splitting (D-FBBS), to solve the above EDOP problem as well as its dual.

We first introduce the Bregman Iterative Regularization as the basis of developing

the algorithm. The forward-backward splitting technique is then employed to split

the optimization problem, leading to a separated one which can be solved more

efficiently than the original combined one in a distributed way with much cheaper

computation and less communication over the network.
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5.3.1 Primal-dual formulation

For the EDOP problem to be feasible, we make the following assumptions.

Assumption 5.2. The cost functions are proper, closed and convex, i.e., fi ∈
Γ(H),∀i ∈ V .

Assumption 5.3. The non-negative weight matrix1 W associated with the com-

munication graph satisfies the following conditions:

• Positive-definite: W T = W and W > 0,

• Stochasticity: W1 = 1 or 1TW = 1T ,

• Connectivity: ρ
(
W − 11T

m

)
< 1.

With the above assumptions, the EDOP problem can be shown to be equivalent

to the following optimal consensus problem (OCP):

min
x∈Rm

f(x) =
m∑
i=1

fi(xi) s.t. (I −W )x = 0. (OCP)

Similar with [45, Lem. 3.1], by noticing that W has a simple eigenvalue one and the

corresponding eigenvector ‘1’ under Assumption 5.3 [89] and thus null{I −W} =

span{1}, together with Assumption 5.2, the OCP problem is equivalent to the

following problem which is an alternative form of the EDOP problem:

min
x∈Rm

f(x) + ιC(x), (5.2)

where ιC(x) is the indicator function defined as follows

ιC(x) =

0, if x ∈ C := {[θ, θ, ..., θ]T |θ ∈ R}

∞, otherwise,

Correspondingly, the dual formulation of the problem (5.2) is [54, Def. 15.10]:

min
y∈Rm

f ∗(y) + ι∗C(−y), (5.3)

1Here we assume each communication link is associated with a positive weight wij .
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where f ∗ and ι∗C(·) are the convex conjugates of f and ιC(·) respectively. Likewise,

since ι∗C(·) indicates the orthogonal space of C (denoted as C⊥) the problem (5.3)

is equivalent to the following optimal exchange problem (OEP):

min
y∈Rm

f ∗(y) =
m∑
i=1

f ∗i (yi) s.t. 1Ty = 0, (OEP)

where y = [y1, y2, ..., ym]T ∈ Rm is the dual variable.

Remark 5.4. As we will show later, the proposed distributed algorithm can solve

both the primal and dual problem simultaneously. In other words, it provides an

alternative distributed way to solve the OEP problem2 which usually needs to be

solved by centralized or parallel approach [48]. In the sequel, the above OCP and

OEP problems will be termed together as a primal-dual problem.

5.3.2 Some basic techniques

Bregman Iterative Regularization

In [57], a Bregman-based method is introduced and revealed to be very efficient in

image processing. In order to improve the quality of image recovery, Bregman iter-

ative regularization method attempts to solve the following optimization problem

min
x
J(x) +H(x)

iteratively by the following algorithm

xk+1 = argmin
x

(Dyk
J (x, xk) +H(x))

yk+1 = yk −∇H(xk+1),
(5.4)

where J is a convex regularization functional, H is convex fitting functional in

inverse problems, e.g., H(x) = ‖Ax− b‖2 for linear problems, and Dyk
f (x, xk) is

the Bregman distance between x and xk. Bregman iteration has an elegant inter-

pretation as it resembles the feedback control in control theory, i.e., feeding back

the error into the input. It was shown in [61] that the above algorithm is, in fact,

2This problem arises from many real application areas, such as smart grid, network utility
maximization and feature splitting in machine learning.
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equivalent to augmented Lagrangian method for linear problems and solves the

following equality-constrained problem:

min
x
J(x) s.t. H(x) = 0. (5.5)

Inspired from the above analysis, following (5.4), we can easily come up with an

algorithm for solving the OCP problem under fixed networks as follows:

xk+1 = arg min
x∈Rm

(
Dyk
f (x, xk) +

1

2γ
‖x‖2

I−W

)
(5.6a)

yk+1 = yk −
1

γ
(I −W )xk+1. (5.6b)

However, the above algorithm cannot be carried out in a distributed way since the

x-update requires the linear operator W to be evaluated implicitly thus requiring

either the global knowledge of the network or infinite inner-loops of consensus to

solve the subproblem (5.6a), which is not practical.

Forward-Backward Splitting Techniques (FBS)

In composite optimization problems, one always needs to solve the following inclu-

sion: 0 ∈ (A + B)z, where A and B are two operators. It is usually expensive to

solve two operators together and a more efficient way is to split them into separated

parts each of which is relatively easier to be evaluated. There are several splitting

techniques proposed in the existing literature. Forward-backward splitting is the

one dedicated for inclusion problems where A is maximally monotone and B is

co-coercive. Specifically, the above inclusion can be rewritten in a split form as:

0 ∈ (I + τA)z − (I − τB)z, yielding the forward-backward splitting algorithm:

zk+1 = proxτA(I − τB)zk, (5.7)

where proxτA = (I+τA)−1 is the proximity operator of A. The convergence of the

forward-backward splitting algorithm is guaranteed by the following Proposition.

Proposition 5.2 (Forward-Backward Splitting [54, 90]). Let A : H → 2H be

maximally monotone, B : H → H be κ-cocoercive for some κ ∈ (0 +∞] and let

τ ∈ [0, 2κ]. Suppose zer(A+B) 6= ∅. Then, the sequence (zk)k∈N generated by the

algorithm (5.7) will converge to z? ∈ zer(A+B).
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5.3.3 D-FBBS algorithm for fixed networks

As abovementioned, the algorithm (5.6) does not permit for distributed implemen-

tation. To see this, let us consider the x-update (5.6a). By the necessary condition

of optimality we have

γyk ∈ (I −W + γ∂f)(xk+1). (5.8)

It is clear that the above inclusion involves computing the inverse of W , thus suffer-

ing from the aforementioned issues. In order to be able to solve it in a distributed

way, we propose a forward-backward splitting approach as follows (cf. Prop. 5.2):

xk+1 = proxγf (Wxk + γyk), (5.9)

where proxγf = (I + γ∂f)−1 is the proximity operator of f with parameter γ.

According to Proposition 5.2, given certain yk, (5.9) is equivalent to (5.8) only

when it runs infinite steps. However, we will show that the OCP problem can still

be solved when (5.9) is executed only once per each iteration, which yields the

following algorithm:

γyk − (xk+1 −Wxk) ∈ γ∂f(xk+1) (5.10a)

(I −W )xk+1 + γ(yk+1 − yk) = 0, (5.10b)

or, equivalently,

xk+1 = arg min
x∈Rm

(
Dyk
f (x, xk) +

1

2γ
‖x−Wxk‖2

)
(5.11a)

yk+1 = yk −
1

γ
(I −W )xk+1. (5.11b)

Remark 5.5. It can be seen from the above algorithm that it can be carried out in a

distributed manner since each agent only requires local information to solve its own

optimization subproblem. In particular, at each iteration, each agent collects the

information from its neighbors and solve the local optimization problem (5.11a)

based on the obtained weighted average. The estimated optimum of the next

iteration is then communicated to its neighbors for updating the dual variable

according to the step (5.11b) which can be also done locally.
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We summarize the above distributed algorithm–Forward-Backward Bregman Split-

ting (D-FBBS)–in Algorithm 1.

Algorithm 1 D-FBBS for Fixed Networks

1: Initialization: yi,0 = 0,∀i ∈ V such that 1Ty0 = 0, while the initial guess of
x0 can be arbitrarily assigned.

2: Primal Update: For each agent i ∈ V , compute:

xavi,k =
∑

j∈Ni∪{i}

wijxj,k

xi,k+1 = arg min
xi∈Rd

(
D
yi,k
f (xi, xi,k) +

1

2γ

∥∥xi − xavi,k∥∥2
)

3: Dual Update: For each agent i ∈ V ,

yi,k+1 = yi,k −
1

γ

∑
j∈Ni

wij (xi,k+1 − xj,k+1)

4: Set k → k+1 and go to Step 2 until certain stopping criteria is satis-
fied (cf. Proposition 5.4).

Additionally, for facilitating our sequent analysis, it is beneficial to add (5.10a)

with (5.10b), which leads to:

γyk+1 −W (xk+1 − xk) ∈ γ∂f(xk+1) (5.12a)

(I −W )xk+1 + γ(yk+1 − yk) = 0. (5.12b)

Remark 5.6. It is clear from (5.12) that the proposed algorithm after splitting is

no longer the exact Bregman iterative method since yk+1 /∈ ∂f(xk+1). Thus, it also

can be understood as an inexact version of Bregman iterative regularization.

5.3.4 Theoretical connections to existing algorithms

In this section, we provide a variant of the proposed algorithm, termed ‘Inexact

D-FBBS’, to tackle cost functions with certain property, i.e., having Lipschitz gradi-

ents and show the specific connections of D-FBBS with some existing well-known

algorithms. In particular, under the above framework, we can perform another

proper forward-backward splitting for functions having Lipschitz gradients, which

essentially belongs to inexact Uzawa methods. We will also show that, via proper
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change of variables, it has close connections with existing well known methods, such

as preconditioned augmented Lagrangian methods and primal-dual approaches.

In order to carry out the following analysis, we first introduce the augmented

Lagrangian associated with the above primal-dual problem as follows:

ψ(x, y) = f(x)− yTx+
1

2γ
‖x‖2

I−W . (5.13)

Remark 5.7. The dual variable y plays a key role in reconciling the discrepancy

of the interests of different agents for achieving global optimum.

The following lemmas will be useful in the subsequent analysis of the connections of

the proposed algorithm to some existing algorithms and the convergence analysis.

Lemma 5.1. Let P be a m ×m matrix such that null(P ) = span{1}. Then, for

each y ∈ span⊥{1}, there exists a unique y′ ∈ span⊥{1} such that y = Py′ and

vice versa, i.e., the P -transformation between y and y′ is bijective.

Proof. See Appendix B.

Lemma 5.2 (Conservation Property II). Consider the sequence {yk}k≥0 generated

by (5.12b). Suppose 1Ty0 = 0 and Assumption 5.3 holds, then 1Tyk = 0,∀k ≥ 0.

The above conservation property is immediately followed by pre-multiplying both

sides of (5.12b) by 1T and knowing from Assumption 5.3 that 1T (I −W ) = 0.

Inexact Uzawa Method

The proposed algorithm is still expensive in the sense that at each iteration we

need to evaluate the inverse of I + γ∂f . However, if we know that f ∈ Γ(H) has

Lipschitz gradients, i.e.,

‖∇f(x)−∇f(y)‖ ≤ κ ‖x− y‖ , ∀x, y ∈ D, (5.14)

then f can be also evaluated forwardly in a cheaper way. That is, applying the

forward-backward splitting technique gives

xk+1 = Wxk − γ(∇f(xk)− yk), (5.15)
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which amounts to an inexact Uzawa Method being applied to the augmented La-

grangian (5.13), i.e.,

xk+1 = xk − γ∇xψ(x). (5.16)

Thus, the above analysis leads to the following variant (Inexact D-FBBS) of the

proposed distributed algorithm:

xk+1 = Wxk − γ(∇f(xk)− yk) (5.17a)

yk+1 = yk −
1

γ
(I −W )xk+1. (5.17b)

Suppose y0 = 0. Summing (5.17b) over k and substituting it into (5.17a) yields

xk+1 = Wxk − γ∇f(xk)︸ ︷︷ ︸
DSM

−
k∑
i=0

(I −W )xi︸ ︷︷ ︸
Correction

,

which can be termed corrected DSM and is, indeed, equivalent to EXTRA with

W = W̃ = I+W ′

2
, where W̃ and W ′ are two properly designed weight matrices [66,

Eq. (2.13)]. Thus, the convergence result3 for the OCP problem follows from the

similar analysis therein, i.e., γ ≤ 2λmin(W )
κ

.

The D-FBBS algorithm is also closely related (or equivalent) to some well-known

existing algorithms by using preconditioned technique or coordination transform.

Preconditioned Augmented Lagrangian Method

To avoid the computation of the inverse of the weight matrix W , a clever way is

to add an extra proximity term as follows

xk+1 = arg min
x∈Rm

ψ(x, yk) +
1

2γ
‖x− xk‖2

W (5.18a)

yk+1 = yk −
1

γ
(I −W )xk+1, (5.18b)

where ψ is the Lagrangian defined in (5.13). Introducing the prox-term allows the

x-update step to be evaluated explicitly. Note that in the algorithm of Bregman

Operator Splitting the above prox-term is replaced with the Bregman distance

3Note that we can obtain the linear convergence result as well if the cost function is known to
be also strongly convex.
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induced by a strongly convex function [59]. It is not difficult to verify that the above

algorithm with 1Ty0 = 0 is equivalent to the proposed Algorithm 1. Moreover,

setting y0 = 0, summing (5.18b) over k and substituting it into (5.18a) yields

xk+1 = proxγf

(
Wxk −

k∑
i=0

(I −W )xi

)
,

which, similar as before, can be shown to be equivalent to P-EXTRA with W =

W̃ = I+W ′

2
[67]. However, we will show that our algorithm not only solve the primal

OCP problem but also the dual OEP problem. In this regard, our convergence

analysis is also different from theirs.

Moreover, it is not difficult to verify that the above algorithm is also equivalent to

the Jacobi variant of distributed Augmented Lagrangian (AL) methods proposed

in [65] when the inner iterations of consensus are carried out only once, i.e., τ = 1.

Note that their convergence result does not support this case.

Primal-Dual Approach

In [56], a general primal-dual proximal point algorithm is proposed as follows:

xk+1 = proxγf (xk + γKy̌k)

yk+1 = proxδg(yk − δKTxk+1)

y̌k+1 = yk+1 + θ(yk+1 − yk), θ ∈ [0, 1]

(5.19)

to solve the generic saddle point problem in image processing. In particular, when

g = 0 and θ = 1, it solves the following symmetric saddle point problem:

0 ∈

{[
∂f K

KT O

][
x

y

]}
(5.20)

Let K =
√
I −W . Since null{K} = null{I − W} = span{1}, we know from

Lemma 5.1 that for each y′ ∈ span⊥{1} there exists a unique y ∈ span⊥{1} such

that y′ = Ky. Thus, the primal-dual algorithm (5.19) can be rewritten as [68, 91]:

xk+1 = proxγf (xk + γ(2y′k − y′k−1))

y′k+1 = y′k − δ(I −W )xk+1.
(5.21)
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It is easy to verify that when δ = 1
γ
,1Ty0 = 0 (Thus 1Tyk = 0,∀k by Lemma 5.2)

the above algorithm is equivalent to the proposed distributed Algorithm 1 and it,

in fact, solves the following asymmetric saddle point problem :

0 ∈

{[
∂f I

I −W O

][
x

y′

]}
, 1Ty′ = 0, (5.22)

which is exactly the optimality conditions (5.23).

Remark 5.8. The algorithm developed based on the symmetric formulation (5.20)

is not suitable for stochastic networks as the saddle point varies with the topology,

i.e., depending on the weight matrix W and thus K. As such, the above connection

via proper change of variables will be no longer valid for stochastic networks.

5.3.5 Convergence analysis

The KKT conditions for optimality of the above primal-dual problem are:

(Primal Feasibility) (Imd −W ⊗ I)x? = 0, (5.23a)

(Dual Feasibility) (1⊗ I)Ty? = 0, (5.23b)

(Lagrangian Optimality) y? ∈ ∂f(x?). (5.23c)

Remark 5.9. As we will show later, the dual feasibility (5.23b), with proper ini-

tialization, can be always guaranteed by the proposed algorithm (cf. Lemma 5.2).

Thus, in the sequel, we will focus on the domain D = {(x, y)|x ∈ Rm, y ∈ C⊥}.

Assumption 5.4. The augmented Lagrangian ψ, as defined in (5.13), has a saddle

point (x?, y?) ∈ D.

The following proposition shows the equivalence between the saddle point of (5.13)

and the optimality conditions (5.23).

Proposition 5.3 (Optimality as Saddle Points). Consider a pair (x?, y?) ∈ D.

Then, it is a saddle point of the Lagrangian (5.13) if and only if it satisfies the

optimality conditions (5.23). Moreover, if it is a saddle point, then x? solves the

OCP problem and y? solves the OEP problem respectively.

Proof. See Appendix B.
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Before proceeding to the main result, let us first establish the following lemmas:

Lemma 5.3. Let x̃ = (I− 11T

m
)x and uk+1 = ‖x̃k+1‖2

I−W +‖xk+1 − xk‖2
W . Suppose

Assumptions 5.2 and 5.3 hold, the sequence {uk}k≥0 generated from the D-FBBS

algorithm (5.11) is monotonically non-increasing. We even have

uk+1 ≤ uk − ‖xk+1 − xk‖2
I−W . (5.24)

Proof. Let x̄ ∈ span{1}. Knowing that ∂f is maximally monotone in the domain

Rmd by Assumption 5.2 and that γyk+1 −W (xk+1 − xk) ∈ γ∂f(xk+1) and γyk −
W (xk − xk−1) ∈ γ∂f(xk) from (5.12a), we have

〈γ(yk+1 − yk)−W (xk+1 − xk) +W (xk − xk−1), xk+1 − xk〉

= 〈−W (xk+1 − xk) +W (xk − xk−1), xk+1 − xk〉

− 〈(I −W )(xk+1 − x̄), xk+1 − xk〉 ≥ 0,

(5.25)

where we have used (5.12b) to replace γ(yk+1 − yk) and the stochasticity of W

(cf. Assumption 5.3) to obtain the last term, i.e., (I −W )x = (I −W )(x− x̄).

Recalling that W is symmetric and positive definite by Assumption 5.3, the above

inequality further leads to

〈(I −W )(xk+1 − x̄), xk+1 − xk〉

≤ 〈−W (xk+1 − xk) +W (xk − xk−1), xk+1 − xk〉

= −‖xk+1 − xk‖2
W + 〈W (xk − xk−1), xk+1 − xk〉

≤ −‖xk+1 − xk‖2
W +

‖xk+1 − xk‖2
W + ‖xk − xk−1‖2

W

2

=
−‖xk+1 − xk‖2

W + ‖xk − xk−1‖2
W

2
.

(5.26)

Combining the following identity

2 〈(I −W )(xk+1 − x̄), xk+1 − xk〉

= ‖xk+1 − x̄‖2
I−W − ‖xk − x̄‖

2
I−W + ‖xk+1 − xk‖2

I−W

(5.27)

with (5.26) yields

‖xk+1 − x̄‖2
I−W − ‖xk − x̄‖

2
I−W + ‖xk+1 − xk‖2

I−W

≤ −‖xk+1 − xk‖2
W + ‖xk − xk−1‖2

W

(5.28)
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which is equivalent to

‖x̃k+1‖2
I−W − ‖x̃k‖

2
I−W + ‖xk+1 − xk‖2

I−W

≤ −‖xk+1 − xk‖2
W + ‖xk − xk−1‖2

W .
(5.29)

Let uk+1 = ‖x̃k+1‖2
I−W + ‖xk+1 − xk‖2

W . Rearranging the terms of (5.29) leads to

(5.24).

The following lemma tells us that once the sequence generated by the proposed

D-FBBS algorithm reaches consensus, the consensus value is the solution to the

primal-dual problem.

Lemma 5.4. Consider the sequence {(xk, yk)}k≥0 generated by the D-FBBS algo-

rithm (5.11). Suppose Assumptions 5.2, 5.3 and 5.4 hold and the sequence {xk}k≥0

converges to some value x? = 1 ⊗ θ? for certain θ? ∈ R. Then, with proper ini-

tialization of 1Ty0 = 0, the sequence {(xk, yk)}k≥0 will converge to a saddle point

(x?, y?) of the primal-dual problem.

Proof. See Appendix B.

The following proposition aims to establish the relationship between the objective

suboptimality and the residuals.

Proposition 5.4 (Stopping Criteria). The objective suboptimality of {(xk, yk)}k≥0

is bounded by the residuals of the optimality conditions as follows:

ψ(xk, yk)− f ? ≤
1

γ
‖xk − x?‖W ‖xk+1 − xk‖W +

1

2γ
‖x̃k‖2

I−W .

Proof. See Appendix B.

Remark 5.10. According to Proposition 5.4, if one can estimate the upper bound

of ‖xk − x?‖W , we can have a non-ergodic convergence rate of o( 1√
k
) in terms of

the objective error.

Now, we are ready to present the main convergence result for fixed networks.

Theorem 5.1. Suppose Assumptions 5.2, 5.3 and 5.4 hold. Then, the sequence

{(xk, yk)}k≥0 generated by Algorithm 1 will converge to a saddle point (x?, y?) of the

primal-dual problem. Moreover, the fixed point residual in terms of ‖xk − x̄k‖2
I−W

and ‖xk+1 − xk‖2
W will decease at a non-ergodic rate of o( 1

k
).
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Proof. Consider the iteration (5.12). Since 1Tyk = 0,∀k ≥ 0 by Lemma 5.2

and null(I − W ) = span{1}, there exists a unique y′k ∈ span⊥{1} such that

yk = (I − W )y′k by Lemma 5.1. Knowing that ∂f is maximally monotone by

Assumption 5.2 and γy? ∈ γ∂f(x?) from the optimality conditions (5.23), together

with (5.12a) we have

〈γ(yk+1 − y?)−W (xk+1 − xk), xk+1 − x?〉

=
〈
γ(I −W )(y′k+1 − y′?), xk+1 − x?

〉
− 〈W (xk+1 − xk), xk+1 − x?〉 ≥ 0.

(5.30)

Since W is symmetric by Assumption 5.3, with (5.12b) we have

〈γ(yk+1 − y?)−W (xk+1 − xk), xk+1 − x?〉

= γ
〈
(I −W )(xk+1 − x?), y′k+1 − y′?

〉
− 〈W (xk+1 − xk), xk+1 − x?〉

= γ2
〈
−(yk+1 − yk), y′k+1 − y′?

〉
− 〈W (xk+1 − xk), xk+1 − x?〉

= γ2
〈
−(I −W )(y′k+1 − y′k), y′k+1 − y′?

〉
− 〈W (xk+1 − xk), xk+1 − x?〉 ≥ 0.

(5.31)

Then, using the similar identity as (5.27) yields

γ2
∥∥y′k+1 − y′?

∥∥2

I−W − γ
2 ‖y′k − y′?‖

2
I−W + ‖xk+1 − x?‖2

W − ‖xk − x
?‖2
W

≤ −γ2
∥∥y′k+1 − y′k

∥∥2

I−W − ‖xk+1 − xk‖2
W .

(5.32)

Let x̃k = (I − 11T

m
)xk. Recalling that yk+1 = (I −W )y′k+1, yk = (I −W )y′k we have

γ2
∥∥y′k+1 − y′k

∥∥
I−W = γ2

〈
y′k+1 − y′k, yk+1 − yk

〉
= −γ

〈
y′k+1 − y′k, (I −W )xk+1

〉
= −

〈
γ(I −W )(y′k+1 − y′k), xk+1

〉
= ‖xk+1‖2

I−W = ‖x̃k+1‖2
I−W ,

(5.33)

where we have used (5.12b) to obtain the last two equalities. Thus, the above

relation (5.32) can be rewritten as

γ2
∥∥y′k+1 − y′?

∥∥2

I−W − γ
2 ‖y′k − y′?‖

2
I−W + ‖xk+1 − x?‖2

W

− ‖xk − x?‖2
W ≤ −‖x̃k+1‖2

I−W − ‖xk+1 − xk‖2
W .

(5.34)

Let Vk = γ2 ‖y′k − y′?‖
2
I−W + ‖xk − x?‖2

W (note that Vk ≥ 0 by Assumption 5.3).

Summing (5.34) over k from 0 to t− 1 yields

t−1∑
k=0

(
‖x̃k+1‖2

I−W + ‖xk+1 − xk‖2
W

)
≤ V0 − Vt <∞. (5.35)
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By Lemma 2, uk+1 = ‖x̃k+1‖2
I−W + ‖xk+1 − xk‖2

W is monotonically non-increasing.

Thus, we have

tut ≤
t−1∑
k=0

uk+1 ≤ V0, (5.36)

yielding ut ≤ V0

t
= o(1

t
). Since ut ≥ 0 by Assumption 5.3, we have limt→∞ ut = 0.

In addition, from (5.34) we know that Vk is bounded and so is xk, by standard

analysis for weak cluster points, it follows that xk will converge to some x? ∈
span{1}. Thus, by Lemma 5.4, we conclude that the sequence {(xk, yk)}k≥0 will

converge to a saddle point (x?, y?) with a non-ergodic rate of o( 1
k
).

5.4 Augmented Distributed Gradient Methods

The proposed D-FBBS algorithm in the previous section has good convergence

performance comparable to the centralized counterpart. However, it requires the

weight matrix to be positive definite and symmetric. This will be problematic

when it comes to consensus protocol design, restricting its application to general

(directed) communication graphs. To deal with general graphs as well as hetero-

geneous computations involved in different agents, we proposed a new algorithm

which can be regarded as an augmented version of the existing DSM algorithm [27].

The proposed algorithm resembles (approximates) its centralized counterpart and

is, in fact, running in analogy to it in the average space.

5.4.1 AugDGM algorithm for fixed networks

Different from the previous D-FBBS algorithm, we make the following assumptions

on the weight matrix4 as well as the cost functions:

Assumption 5.5. The weight matrix W = {wij} associated with the communi-

cation graph satisfies 1TW = 1T , W1 = 1, and η = ρ(W − 11T

m
) < 1 (see [89] for

the details on the design of the weight matrix).

Assumption 5.6. Each objective function fi is convex and coercive5 such that

‖xi‖ → ∞ leads to fi(xi)→∞.

4The underpinning graph can be directed as long as it is balanced and the assumption of the
weight matrix is satisfied (cf. Assumption 5.5).

5It can be relaxed to only require the overall function f to be convex and coercive.
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Assumption 5.7. Each objective function fi is continuously differentiable and has

Lipschitz gradient as follows:

‖gi(xi)− gi(x′i)‖ ≤ Li ‖xi − x′i‖ ,∀xi, x′i ∈ R

where Li is the Lipschitz constant while gi(xi) and gi(x
′
i) are the gradients of fi

evaluated at xi and x′i respectively.

Remark 5.11. It follows immediately from Assumptions 5.6 and 5.7 that the

global function f is convex, coercive and has Lipschitz gradient with Lipschitz

constant L = max{Li} since we have for any x, y ∈ H

‖g(x)− g(y)‖ =

∥∥∥∥∥∥∥∥∥∥


g1(x1)− g1(y1)

g2(x2)− g2(y2)

· · ·
gm(xm)− gm(ym)


∥∥∥∥∥∥∥∥∥∥
≤

√√√√ m∑
i=1

L2
i ‖xi − yi‖

2 ≤ L ‖x− y‖ .

To exactly solve the EDOP problem under the above assumptions, we propose

a new augmented distributed gradient method (termed AugDGM) as detailed in

Algorithm 2. In contrast to most of the existing algorithms, the proposed algorithm

involves an extra step of consensus on the gradients:

• Local update step for optimization. For agreement of the estimates of all

agents to the global optimum, we use the following rule for update [23, 27]:

si,k+1 = xi,k − γi · yi,k
xi,k+1 = si,k +

∑
j∈Ni

wij(sj,k − si,k), (5.37)

where si,k is the intermediate variable of agent i to be sent to its neighbors

at time k, xi,k the estimate of agent i obtained at time k and γi ∈ {0} ∪
[γmin, γmax] is the stepsize chosen by agent i all the time.

• Dynamic average consensus step. To ensure that the algorithm has the ability

to seek the exact optimum, we employ dynamic average consensus to track

the average of the gradients of objective functions [83]

yi,k+1 = yi,k +
∑
j∈Ni

wij(yj,k − yi,k) + ∆gi,k, (5.38)



Chapter 5. Fixed Networks and Synchronous Implementation 71

where ∆gi,k = gi(xi,k+1)−gi(xi,k) and yi,k is the introduced auxiliary variable

tracking the average of the gradients g(xk).

By properly intertwining the above two steps, the proposed distributed algorithm

can be rewritten in a compact form as follows:

xk+1 = W [xk − γ � yk] (5.39a)

yk+1 = W [yk + ∆gk], (5.39b)

where yk is the introduced auxiliary variable, ∆gk = g(xk+1)−g(xk) the incremental

change of the gradients and γ the vector of stepsize chosen by all agents.

Algorithm 2 AugDGM for Fixed Networks

1: Initialization: ∀ agent i ∈ V : xi,0 arbitrarily assigned while yi,0 = gi(xi,0).
2: Local Optimization: ∀ agent i ∈ V , computes:

si,k = xi,k − γi · yi,k
xi,k+1 = si,k +

∑
j∈Ni

wij(sj,k − si,k) (5.40)

3: Dynamic Average Consensus: ∀ agent i ∈ V , computes:

qi,k = yi,k + gi(xi,k+1)− gi(xi,k)

yi,k+1 = qi,k +
∑
j∈Ni

wij (qj,k − qi,k) (5.41)

4: Set k → k+1 and go to Step 2.

5.4.2 Convergence analysis

To quantify the variation of the stepsizes used by agents, we introduce the following

parameter which will be crucial in the subsequent convergence analysis.

Definition 5.7 (Heterogeneity of Stepsize I). Let γ be the vector of the stepsizes

chosen by the agents. Then, the heterogeneity of stepsize (HoS) is defined as

∆γ =
‖γ̃‖
‖γ̄‖

,

where γ̄ = 11T

m
γ and γ̃ = γ − γ̄.
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Let us first consider a scalar sequence and its associated “L2-stability” result.

Lemma 5.5. Let {υk}k≥0 and {ωk}k≥0 be positive scalar sequences such that for

all k ≥ 0

υk+1 ≤ ηυk + ωk, (5.42)

where η ∈ (0, 1) is the decaying factor. Let Υk =
√∑k

i=0 υ
2
i and Ωk =

√∑k
i=0 ω

2
i

be the square root of “energy” from 0 to k. Then, we have

Υk ≤ pΩk + q,

where p =
√

2
1−η and q =

√
2

1−η2υ0.

Proof. See Appendix B.

To facilitate our subsequent analysis, let us consider the following auxiliary se-

quence which runs in analogy with (5.39a):

x̄k+1 = x̄k − γ � yk, (5.43)

where x̄k = 11T

m
xk and γ � yk = 11T

m
(γ � yk).

Likewise, with Assumption 5.5, projecting (5.39b) into the average space gives

ȳk+1 = ȳk + ḡk+1 − ḡk, (5.44)

where ȳk = Π‖yk and ḡk = Π‖g(xk) and we have the following conservation property

for the above sequence.

Lemma 5.6 (Conservation Property III). Consider the sequence (5.44). Let y0 =

g(x0). Suppose Assumption 5.5 holds. Then, we have ȳk = ḡk,∀k ≥ 0.

This lemma is immediately followed by summing (5.44) over k and knowing the

fact that y0 = g(x0).

Remark 5.12. It follows from Proposition 5.1-(iii) and Lemma 5.6 that γk � yk =

γ̄� ȳk + γ̃ � ỹk = γ̄� ḡk + γ̃ � ỹk. Thus, the proposed AugDGM algorithm, in fact,

resembles the centralized counterpart with some approximation error.

Before proceeding to the main result, we present our next important lemma.
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Lemma 5.7. Consider the algorithm 2 and suppose Assumptions 5.5 and 5.7 hold.

Let Xk =
√∑k

i=0 ‖x̃i‖
2, Yk =

√∑k
i=0 ‖ỹi‖

2 and Zk =
√∑k

i=0 ‖γ � yi‖
2

be the

signal energy from 0 to k and γmax = max{γi}, β = γmaxL and η′ = η+β(1 + ∆γ).

If β < (1−η)2

(1+∆γ)(2η3+2η2−η+1)
such that ρ1ρ2 < 1 and η′ < 1, then we have

Xk ≤
ρ1p2 + p1

1− ρ1ρ2

Zk +
q1 + ρ1q2

1− ρ1ρ2

(5.45a)

Yk ≤
ρ2p1 + p2

1− ρ1ρ2

Zk +
q2 + ρ2q1

1− ρ1ρ2

, (5.45b)

where ρ1 =
√

2ηγmax(1+∆γ)

1−η , p1 =
√

2η∆γ

1−η , q1 =
√

2‖x̃0‖√
1−η2

and ρ2 =
√

2η(1+η)L
1−η′ , p2 =

√
2ηL(1+∆γ)

1−η′ , q2 =
√

2‖ỹ0‖√
1−η′2

.

Proof. See Appendix B.

Now, we are ready to present our main result.

Theorem 5.2. Consider the distributed algorithm 2 with y0 = g(x0) and sup-

pose Assumptions 5.1, 5.5, 5.6 and 5.7 hold. Then, there exists a positive num-

ber γ?(η,∆γ)/L such that if γmax < γ?, we have limk→∞ ‖xk − x̄k‖ = 0 and

limk→∞ f(xk) = f ?, where f ? is the optimal value of the EDOP problem.

Proof. Consider the sequence (5.43). Since f has Lipschitz gradient by Assump-

tion 5.7 and Remark 5.11, we have for ∀x, x′ ∈ Rm

f(x′) ≤ f(x) + g(x)T (x′ − x) +
L

2
‖x′ − x‖2

.

Let ∆x̄k = x̄k+1 − x̄k = −γ � yk. Plugging x′ = x̄k+1 and x = x̄k into the above

relation yields

f(x̄k+1) ≤ f(x̄k) + g(x̄k)
T∆x̄k +

L

2
‖∆x̄k‖2

≤ f(x̄k) + g(xk)
T∆x̄k +

L

2
‖∆x̄k‖2 + (g(x̄k)− g(xk))

T∆x̄k

≤ f(x̄k)− ȳTk γ � yk +
L

2
‖∆x̄k‖2 + (g(x̄k)− g(xk))

T∆x̄k,

(5.46)

where for the last inequality we have used the fact that g(xk)
T∆x̄k = ḡTk ∆x̄k =

ȳTk ∆x̄k, the first equality of which follows from Proposition 5.1-(i) while the second

is due to Conservation Property III in Lemma 5.6.
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Let us first bound the second term. Using Proposition 5.1-(iii) we have

ȳTk γ � yk =

√
m

‖γ̄‖
(γ � yk − γ̃ � ỹk)Tγ � yk

≥
√
m

‖γ̄‖
(‖γ � yk‖2 −

∥∥γ̃ � ỹk∥∥ ‖γ � yk‖)
≥
√
m

‖γ̄‖
‖γ � yk‖2 − ‖γ̃‖

‖γ̄‖
‖ỹk‖ ‖γ � yk‖

≥ 1

γmax
‖γ � yk‖2 −∆γ ‖ỹk‖ ‖γ � yk‖ ,

(5.47)

where we have employed Proposition 5.1-(iv) to obtain the third inequality as well

as the definition of HoS (cf. Definition 5.7) for the last inequality. Then, let us

consider the last deviate term. By Assumption 5.7 and Remark 5.11, we obtain

∥∥(g(x̄k)− g(xk))
T∆x̄k

∥∥ ≤ L ‖x̃k‖ ‖∆x̄k‖ . (5.48)

Then, combining (5.46), (5.47) and (5.48) leads to

f(x̄k+1) ≤ f(x̄k)−
(

1

γmax
− L

2

)
‖∆x̄k‖2 + (∆γ ‖ỹk‖+ L ‖x̃k‖) ‖∆x̄k‖ . (5.49)

Summing the above inequality over k from 0 to t, we have

f(x̄t+1) ≤ f(x̄0)−
(

1

γmax
− L

2

) t∑
k=0

‖∆x̄k‖2

+ ∆γ

t∑
k=0

‖ỹk‖ ‖∆x̄k‖+ L
t∑

k=0

‖x̃k‖ ‖∆x̄k‖ .
(5.50)

Using Cauchy-Schwarz inequality and recalling that ∆x̄k = −γ � yk, we obtain

f(x̄t+1) ≤ f(x̄0)−
(

1

γmax
− L

2

)
Z2
t + ∆γYtZt + LXtZt. (5.51)

Suppose all the assumptions of Lemma 5.7 hold and β < (1−η)2

(1+∆γ)(2η3+2η2−η+1)
such

that ρ1ρ2 < 1 and η′ < 1, then invoking Lemma 5.7 we have

f(x̄t+1) ≤ f(x̄0)− µZ2
t + νZt, (5.52)
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where µ = 1
γmax
− L

2
− L(p1+ρ1p2)+∆γ(p2+ρ2p1)

1−ρ1ρ2

ν = L(q1+ρ1q2)+∆γ(q2+ρ2q1)

1−ρ1ρ2

(5.53)

Let ut = f(x̄(t))− f ?. Then, since ut ≥ 0,∀t ≥ 0, (5.52) can be rewritten as

−µZ2
t + νZt + u0 ≥ 0. (5.54)

Additionally, it is not difficult to show that µ > 0 when 0 < β < b−
√
b2−4ac
2a

where



a = (1− η2)(1− η)(1 + ∆γ)

b = 4η(η2 + 1)∆2
γ + (4η3 − 4η2 + 6η + 2)∆γ

+ 4η3 + 5η2 − 4η + 3

c = 2(1− η)2

(5.55)

which further implies that

lim
t→∞

Zt ≤ Z∞ =
ν +

√
ν2 − 4µu0

2µ
<∞. (5.56)

Thus, applying the monotone convergence theorem to the above relation, we have

limk→∞ ‖γ � yk‖ = 0. Also, from (5.45b) of Lemma 5.7 and (5.56), we know that

lim
k→∞

Yk ≤ Y∞ ≤
(ρ2p1 + p2)Z∞ + (q2 + ρ2q1)

(1− ρ1ρ2)
<∞,

yielding limk→∞ ‖ỹk‖ = 0. Together with Proposition 5.1-(iv) we further have

lim
k→∞
‖ȳk‖ ≤ lim

k→∞

(√
m ‖γ � yk‖
‖γ̄‖

+ ∆γ ‖ỹk‖
)

= 0.

Likewise, using (5.45a) of Lemma 5.7 and (5.56) yields limk→∞ ‖x̃k‖ = 0.

Since f is convex by Assumption 5.6 and Remark 5.11, for any x̄k ∈ Rm we have

f(x̄k)− f(x?) ≤ g(x̄k)
T (x̄k − x?)

= g(xk)
T (x̄k − x?) + (g(x̄k)− g(xk))

T (x̄k − x?)

= ḡTk (x̄k − x?) + (g(x̄k)− g(xk))
T (x̄k − x?)

≤ ‖ḡk‖ ‖x̄k − x?‖+ L ‖x̃k‖ ‖x̄k − x?‖ ,

(5.57)
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where x? is an optimum to the EDOP problem and we have used Proposition 5.1-(i)

to obtain the first term of the second inequality.

Moreover, we know f(x̄k) is bounded by virtue of (5.52) and (5.56), which implies

that ‖x̄k − x?‖ is also bounded since function f is coercive by Assumption 5.6.

Thus, in view of (5.57) and recalling that ȳk = ḡk, we claim that

lim
k→∞

f(x̄k) = f(x?) = f ?. (5.58)

Further, by mean value theorem, we have

f(xk) = f(x̄k) + g(x̄k + ξx̃k)
T x̃k, (5.59)

where 0 ≤ ξ ≤ 1 is some positive number.

Since ‖x̄k + ξx̃k‖ ≤ ‖x̄k‖ + ξ ‖x̃k‖ is bounded as shown above and g is Lipschitz

continuous, thus ‖g(x̄k + ξx̃k)‖ is also bounded. Then, from (5.59) and recalling

that limk→∞ ‖x̃k‖ = 0, we have

lim
k→∞
|f(xk)− f(x̄k)| ≤ lim

k→∞
‖g(x̄k + ξx̃k)‖ ‖x̃k‖ = 0. (5.60)

Combining (5.58) and (5.60) yields limk→∞ f(xk) = f ?, which completes the proof.

Remark 5.13. The estimated theoretical upperbound of the stepsize is given

in Equation (5.55). For illustration, Figure 5.1 plots the estimated upper bound of

β with respect to the spectral radius η given certain value of ∆γ and with respect

to ∆γ given certain value of η respectively to ensure certain conditions (i.e., η′ < 1,

ρ1ρ2 < 1 and µ > 0) to be satisfied for convergence.

Corollary 5.3. Consider the distributed algorithm 2 with y0 = g(x0). Suppose all

the assumptions of Theorem 5.2 hold and all agents use the same stepsize (∆γ = 0).

Then, there exists a positive number γ?(η,∆γ)/L such that if γmax < γ?, we have

limk→∞ ‖xk − x̄k‖ = 0 and limk→∞ f(xk) = f ?.

Proof. It directly follows from Theorem 5.2 and noticing that ∆γ = 0.

Theorem 5.4. Consider the distributed algorithm 2 with y0 = g(x0). Let x̂k =
1
t

∑t−1
k=0 xk be the running average and suppose all the assumptions of Theorem 5.2
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Figure 5.1: Plots of the estimated upper bound of β to ensure certain condi-
tions: η′ < 1, ρ1ρ2 < 1 and µ > 0 for convergence of the algorithm.

hold and all agents use the homogeneous (same) stepsize (∆γ = 0). Then, there

exists a positive number γ? := ϕ(η,∆γ)/L such that, if γmax < γ?, we have∥∥x̂k − ˆ̄xk
∥∥ ≤ O( 1√

k
) and |f(x̂k)− f ?| ≤ O( 1√

k
).

Proof. Consider the sequence (5.43). Let x? ∈ R be an optimum of the EDOP

problem. Then, we have

‖x̄k+1 − x?‖2 = ‖x̄k − γ � yk − x?‖2

≤ ‖x̄k − x?‖2 − 2 〈γ � yk, x̄k − x?〉+ ‖γ � yk‖2
.

(5.61)

Let us consider the middle term.

〈γ � yk, x̄k − x?〉
(a)
=
〈
γ̄ � ȳk + γ̃ � ỹk, x̄k − x?

〉
(b)

≥ ‖γ̄‖√
m
〈ȳk, x̄k − x?〉

(c)
=
‖γ̄‖√
m
〈g(xk), x̄k − x?〉

(d)

≥ ‖γ̄‖√
m

(f(xk)− f ?)−
‖γ̄‖√
m
‖g(xk)‖ ‖x̃k‖ ,

(5.62)

where (a) is due to Prob. 5.1-(iii), (b) is clear since ‖γ̃‖ = 0, (c) is derived from

Conversation Property III (cf. Lemma 5.6) and Prob. 5.1-(i) and (d) is obtained

using the convexity of f and the Cauchy-Schwarz inequality.

Note that x̄k is bounded with sufficiently small γmax and so is xk (cf. Theorem 5.2).

Since g is continuous and thus bounded for any compact domain D, we have

‖g(x)‖ ≤ C, where C is certain positive number.
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Then, combining (5.61) and (5.62) yields

‖x̄k+1 − x?‖2 ≤ ‖x̄k − x?‖2 − 2 ‖γ̄‖√
m

(f(xk)− f ?) +
2 ‖γ̄‖C√

m
‖x̃k‖+ ‖γ � yk‖2

,

(5.63)

Using convexity of f , we also have

|f(xk)− f(x̄k)| ≤ |〈g(xk), xk − x̄k〉| ≤ ‖g(xk)‖ ‖x̃k‖ ≤ C ‖x̃k‖ ,

which further allows us to obtain

f(xk)− f ?

= f(xk)− f(x̄k) + |f(xk)− f(x̄k)| − |f(xk)− f(x̄k)|+ f(x̄k)− f ?

≥ |f(xk)− f ?| − 2 |f(xk)− f(x̄k)| ≥ |f(xk)− f ?| − 2C ‖x̃k‖ .

(5.64)

Combining (5.63) and (5.64) and rearranging the terms we have

2 ‖γ̄‖√
m
|f(xk)− f ?|

≤ ‖x̄k − x?‖2 − ‖x̄k+1 − x?‖2 +
6 ‖γ̄‖C√

m
‖x̃k‖+ ‖γ � yk‖2

.

(5.65)

Summing the above inequality over k from 0 to t− 1 leads to

2 ‖γ̄‖√
m

t−1∑
k=0

|f(xk)− f ?| ≤ ‖x̄0 − x?‖2

− ‖x̄t − x?‖2 +
6 ‖γ̄‖C√

m

t−1∑
k=0

‖x̃k‖+
t−1∑
k=0

‖γ � yk‖2
.

(5.66)

In addition, using the following Cauchy-Schwarz inequality

a1 + a2 + ...+ am ≤
√
m
√
a2

1 + a2
2 + ...+ a2

m,

where a1, a2, ..., am are positive numbers, we have

t−1∑
k=0

‖x̃k‖ ≤
√
t

√√√√ t−1∑
k=0

‖x̃k‖2. (5.67)
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Thus, dividing both sides of (5.66) by 2‖γ̄‖√
m
t we have

1

t

t−1∑
k=0

|f(xk)− f ?| ≤
√
m(Z∞ + A0)

2 ‖γ̄‖ t
+

3CX∞√
t
. (5.68)

where A0 = ‖x̄0 − x?‖2.

Let ˆ̄xt = 1/t
∑t−1

k=0 x̄k be the running average. Using the convexity of f we have

|f(x̂t)− f ?| ≤
1

t

t−1∑
k=0

|f(xk)− f ?| ≤
√
m(Z∞ + A0)

2 ‖γ̄‖ t
+

3CX∞√
t
. (5.69)

Likewise, diving both sides of (5.67) by t we have

1

t

t−1∑
k=0

‖x̃k‖ ≤
1√
t

√√√√ t−1∑
k=0

‖x̃k‖2 ≤ 1√
t
X∞. (5.70)

Let ˆ̃xk = 1/t
∑t−1

k=0 x̃k. Again using the convexity of norm we have
∥∥x̂k − ˆ̄xk

∥∥ ≤
1
t

∑t−1
k=0 ‖x̃k‖ ≤

1√
t
X∞. The rest of the proof follows from the fact that X∞ and

Z∞ are bounded as previously shown in Theorem 5.2 with sufficiently small γmax.

5.5 Application to Sensor Fusion Problems

In this section, we report some simulations to show the effectiveness of the proposed

algorithms over fixed networks. In particular, we consider a canonical distributed

estimation problem. Each sensor is assumed to measure certain unknown param-

eter θ ∈ Rd with some Gaussian noise ωi, i.e., zi = Miθ + ωi, where Mi ∈ Rr×d is

the measurement matrix of sensor i and zi ∈ Rr is the measurement data collected

by sensor i. Thus, the maximum likelihood estimation with regularization can be

casted as the following minimization problem:

θ? = argmin
θ∈Rd

(
m∑
i=1

‖zi −Miθ‖2 + λ ‖θ‖2

)
(5.71)

where λ is the regularization parameter.



80 5.5. Application to Sensor Fusion Problems

0 200 400 600 800
10

−20

10
−15

10
−10

10
−5

10
0

Iterations

R
es

id
ua

l

 

 

DSM: γ=0.05
DSM: γ=0.2
Inexact D−FBBS: γ=0.2
D−FBBS: γ=1

(a) D-FBBS Versus DSM

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

Iterations

R
es

id
ua

l

 

 

DSM: ∆γ=0.29

DSM: ∆γ=0

AugDGM: ∆γ=0.29

AugDGM: ∆γ=0

(b) AugDGM Versus DSM

Figure 5.2: Comparison of the proposed algorithms with the best known DSM
algorithm over a fixed network. (a) Plot of the relative FPR versus the number
of iterations for DSM, inexact D-FBBS and D-FBBS respectively. (b) Plot of
the relative FPR versus the number of iterations for DSM and AugDGM. The

stepsizes for DSM and D-FBBS algorithms are optimized manually.

Parameter Setting: We set d = 4, r = 1,m = 50 for all algorithms. The

measurement matrix is generated from a uniform distribution in the unit Rr×d

space and the noise follows a i.i.d. Gaussian process with zero mean and certain

varianceN (0, 0.2). The regularization parameter is set as λ = 0 for both algorithms

(note that we do not need the cost function to be strongly convex for the algorithm

to converge for fixed networks). The weight matrix is designed using the simple

rule in [89, 92], i.e., W = I − αL with α = 1
2+dmax

for D-FBBS6 and α = 1
2dmax

for AugDGM, where dmax is the maximum degree of the communication graph.

A stepsize of γ = 0.05 · 1 and γ = [0.26, 0.27, ..., 0.75]T is used to simulate the

case of homogeneous and heterogeneous computation respectively. We compare

our results with DSM [27] in terms of the relative FPR e = ‖xk−x?‖2

‖x0−x?‖2
.

Discussions: Figure 5.2a plots the relative FPR of D-FBBS, its inexact version

and DSM with respect to the number of iterations for a fixed network employing

constant stepsizes. It follows from the figure that all algorithms have similar con-

vergence performance at the initial stage. However, DSM gets stuck after several

iterations, which is not surprising as implied by the theoretical result [93], while the

proposed D-FBBS and its inexact version still converge linearly to the optimum.

Note that the inexact D-FBBS have comparable computational complexity with

DSM as both are using gradient-based search.

6The value of α is such designed that the weight matrix is positive-definite.
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Figure 5.2b shows the estimation results of the proposed AugDGM and DSM under

homogeneous (same) stepsize and heterogeneous (different) stepsize rules respec-

tively. Likewise, it follows from the figure that the performance of both algorithms

are quite similar in the initial stage for both scenarios. However, DSM gets stuck

after several iterations, resulting in an estimation error which is further enlarged

under the heterogeneous setting, while AugDGM still progresses linearly to the

exact optimum. It can also be observed that AugDGM performs almost the same

under both scenarios, implying that it is robust to the heterogeneity of stepsize.

Remark 5.14. In our simulations, we found that the algorithm is still able to seek

the exact optimum even using smaller γ than indicated by Theorem 6.1, which leads

to faster convergence. This implies that the bound obtained is a bit conservative.

5.6 Summary

In this chapter, we have proposed two basic distributed algorithms, namely D-

FBBS and AugDGM, to solve the general distributed estimation problem encoun-

tered in large-scale sensor networks where the communication graph is fixed and

the algorithm is synchronously running. Both algorithms are in augmented form in-

volving an extra step of consensus and shown to be able to seek the exact optimum

even with constant stepsizes. In developing the D-FBBS algorithm, we introduced

a distributed algorithm framework based on the Bregman method and operator

splitting. This framework allows us to easily come up with efficient distributed

algorithms for problems with certain structures. We have also established a non-

ergodic convergence rate of o( 1
k
) in terms of FPR for the D-FBBS algorithm for

general convex functions and an ergodic convergence rate of O( 1√
k
) in terms of OBE

for the AugDGM algorithm employing homogeneous (same) stepsizes for coercive

and convex functions with Lipschitz gradients. In addition, we have shown that

the AugDGM algorithm is able to tackle with more general (balanced directed)

graphs with heterogeneous computation (i.e., using different stepsizes), which, as

we will see later, lends itself to asynchronous scenarios.





Chapter 6

Distributed Optimization in

Sensor Networks: Stochastic

Networks and Asynchronous

Implementation

This chapter extends the two basic algorithms developed in the previous chapter

to stochastic networks and asynchronous scenarios. In particular, we formulate

the problem in Chapter 6.1 with emphasis on the stochastic modeling of the com-

munication graph. We provide some preliminaries related to probability theory

in Chapter 6.2. The application of D-FBBS to stochastic networks as well as its

convergence analysis is made in Chapter 6.3. To further deal with asynchronous

scenarios, we propose an asynchronous version of AugDGM in Chapter 6.4 where

the asynchronous implementation model is also introduced with illustration.

6.1 Problem Statement

We consider the same EDOP problem as in the previous chapter except that we are

now dealing with asynchronous scenarios over stochastic networks. In particular,

we assume agents are communicating with each other through a random network

captured by a graph G = (V , E). In large-scale sensor networks, sensors are no

longer guaranteed to be able to communicate with any agent at any time. Instead,

83
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we assume each communication link is subject to random failures. That is, at

each time tick, the communication link eij ∈ E will be active or deactive with

probabilities pij and 1 − pij respectively. Once the link is being activated, the

associated agent will be active as well. Thus, each agent is awake or asleep with

probabilities pi =
∑

j∈Ni pij and 1− pi respectively.

6.2 Preliminaries

6.2.1 Induced norm and its properties

Definition 6.1 (Inner Product and Induced Norm). Given two random vectors

x, y ∈ Rm and a square random matrix A ∈ Rm×m, the inner product is defined in

expectation as 〈x, y〉E = E [〈x, y〉] = E
[
xTy

]
, where 〈·, ·〉 is the inner product in

Euclidean space. In addition, we define the induced vector norm and matrix norm

as ‖x‖E =
√
E
[
‖x‖2] and ‖A‖E = sup‖x‖E=1 ‖Ax‖E respectively.

Lemma 6.1. Let x, y ∈ Rn be random vectors and An×n be a square random

matrix. Then, we have the triangle inequality:

‖x+ y‖E ≤ ‖x‖E + ‖y‖E ,

and the Cauchy-Schwarz inequality:

〈x, y〉E ≤ ‖x‖E ‖y‖E .

Further, if A is independent of x, we further have

‖A‖E =
√
ρ(E[ATA]),

where ρ(·) is the spectral radius.

Proof. See Appendix B.

6.2.2 Convergence concepts in probability

The following convergence concepts are very important to the developed results.
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Definition 6.2 (Mean Square Convergence). Xn converges in mean square to the

random variable X as n→∞ if ‖Xn −X‖E → 0 as n→∞.

Definition 6.3 (Probability Convergence). Xn converges in probability to the

random variable X as n→∞ if ∀ε > 0, we have P (|Xn −X|) > ε→ 0 as n→∞.

Definition 6.4 (Almost Sure Convergence). Xn converges almost surely (a.s.) to

the random variable X as n→∞ if P ({w : Xn(w)→ X(w)} as n→∞) = 1.

6.2.3 Some basic inequalities and lemmas

The following inequalities are very crucial in developing the subsequent results.

Proposition 6.1 (Jensen’s inequality). Let X be a random variable and f a convex

function. Suppose that X and g(X) are integrable. Then, f(E [X]) ≤ E [f(X)].

Proposition 6.2 (Markov’s inequality). Let X be the random variable. Then we

have P (|X| > ε) ≤ E[|X|p]
εp

.

The following lemmas will be useful in showing the almost sure convergence result.

Lemma 6.2 (Theorem 4.4-(j), p.52 [94]). Let X be a non-negative random variable.

If E [X] <∞ then X <∞ a.s..

Lemma 6.3 (Corollary 5.2, p.56 [94]). Let {Xk}k≥0 be a collection of non-negative

random variables. Then E [
∑∞

k=0Xk] =
∑∞

k=0 E [Xk].

Lemma 6.4 (Borel-Cantelli Lemma). Let {En, n ≥ 1} be arbitrary events. Then∑∞
n=1 P (En) <∞⇒ P (lim supAn) = 0.

Lemma 6.5 (Robbins and Siegmung [95]). Let (Ω,F ,P) be a probability space and

F0 ⊂ F1 ⊂ · · · ⊂ Fk be a sequence of σ-subfields of F . In addition, let vk, ak, wk be

non-negative random variables and let the following relation hold with probability

one for any k ≥ 0:

E(vk+1|Fk) ≤ (1 + ak)vk − uk + wk,

where
∑∞

k=0 ak < ∞ a.s.,
∑∞

k=0wk < ∞ a.s.. Then, the sequence {vk}k≥0 will

converge to some random variable v a.s. and we further have
∑∞

i=0 uk <∞ a.s..
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6.3 Distributed Bregman Forward-Backward Split-

ting Algorithm

We show that under a stronger assumption on the cost functions, the previously

proposed D-FBBS algorithm can be employed to solve the same distributed esti-

mation problem over stochastic networks. Note that most of the analysis of the

algorithm for fixed networks is not readily transferable to stochastic networks as the

Lyapunov function employed therein is dependent on the network (i.e., the weight

matrix W ) thus varying with time. We have to find a new (common) Lyapunov

function that is immune to varying (stochastic) networks. Bregman distance thus,

as we will show, plays a key role in the subsequent convergence analysis.

6.3.1 D-FBBS algorithm for stochastic networks

For the EDOP problem to be feasible, we make the following assumption:

Assumption 6.1. Let {Wk}k≥0 be the i.i.d. stochastic weight matrix sequence and

W = E(Wk) be the mean. Then, the following conditions hold: W T
k = Wk, Wk >

0, Wk1 = 1, ∀k ≥ 0, and ρ
(
W − 11T

m

)
< 1.

With the above assumption, similar with that of fixed networks (cf. Section 5.3.1),

it is not difficult to see that the EDOP problem is equivalent to the following

stochastic optimal consensus problem1 (SOCP):

min
x∈Rmd

f(x) =
m∑
i=1

fi(xi) s.t. (I − E
[
W T
k Wk

]
)x = 0 (SOCP)

Assumption 6.2. The cost function f is strongly convex, i.e., D
∂f(y)
f (x, y) ≥

m
2
‖x− y‖2.

To solve the SOCP problem, we use the algorithm as follows:

xk+1 = arg min
x∈Rm

(
Dyk
f (x, xk) +

1

2γ
‖x−Wkxk‖2

)
yk+1 = yk −

1

γ
(I −Wk)xk+1,

(6.1)

1Note that, when WT
k = Wk,∀k ≥ 0, we have ρ(E

[
WT
k Wk

]
− 11T

m ) = ρ2(E [Wk]− 11T

m ).
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which is equivalent to

γyk − (xk+1 −Wkxk) ∈ γ∂f(xk+1) (6.2a)

(I −Wk)xk+1 + γ(yk+1 − yk) = 0. (6.2b)

As before, adding (6.2a) with (6.2b) yields:

γyk+1 −Wk(xk+1 − xk) ∈ γ∂f(xk+1) (6.3a)

(I −Wk)xk+1 + γ(yk+1 − yk) = 0. (6.3b)

The proposed algorithm for stochastic networks is summarized in Algorithm 3.

Algorithm 3 D-FBBS for Stochastic Networks

1: Initialization: yi,0 = 0,∀i ∈ V such that 1Ty0 = 0, while the initial guess of
x0 can be arbitrarily assigned.

2: Primal Update: For each agent i ∈ V , compute:

xavi,k =
∑

j∈Ni∪{i}

wij,kxj,k

xi,k+1 = arg min
xi∈Rd

(
D
yi,k
f (xi, xi,k) +

1

2γ

∥∥xi − xavi,k∥∥2
)

3: Dual Update: For each agent i ∈ V ,

yi,k+1 = yi,k −
1

γ

∑
j∈Ni

wij,k (xi,k+1 − xj,k+1)

4: Set k → k+1 and go to Step 2

6.3.2 Convergence analysis

We present the main result of the D-FBBS algorithm for stochastic networks.

Theorem 6.1. Let λmax = max{{λ(Wk)}k≥0} ∈ (0, 1] ∀k ≥ 0 and λmin =

min{{λ(Wk)}k≥0} ∈ (0, 1] ∀k ≥ 0. Suppose Assumptions 5.4, 6.1, 6.2 hold and

γ >
2(1− µ)(1− λmin)

mµ
+

2λmax
m

,
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where µ ∈ (0, 1). Then, the sequence {(xk, yk)}k≥0 generated by the D-FBBS algo-

rithm (6.1) will converge almost surely to the optimal solution of the SOCP problem.

Moreover, let x̂k = 1
k

∑k−1
t=0 xt and ˆ̄xk = 1

k

∑k−1
t=0 x̄t be the running average of xt and

x̄t respectively. Then, the fixed point residual in terms of E
[
‖x̂k+1 − x̂k‖2] and

E
[∥∥x̂k − ˆ̄xk

∥∥2

I−W

]
will decrease at an ergodic rate of O( 1

k
).

Proof. Let us first consider an interesting recursive relation as follows:

D
qk+1

γf (x, xk+1)−Dqk
γf (x, xk) +Dqk

γf (xk+1, xk)

= γf(x)− γf(xk+1)− 〈qk+1, x− xk+1〉 − γf(x) + γf(xk)

+ 〈qk, x− xk〉+ γf(xk+1)− γf(xk)

− 〈qk, xk+1 − xk〉 = 〈qk+1 − qk, xk+1 − x〉 .

(6.4)

Let qk = γyk −Wk(xk − xk−1). Using (6.3b) we have

qk+1 − qk = γ(yk+1 − yk)−Wk(xk+1 − xk) +Wk−1(xk − xk−1)

= −(I −Wk)xk+1 −Wk(xk+1 − xk) +Wk−1(xk − xk−1).
(6.5)

Let x̄ ∈ span{1}. Combining (6.4) and (6.5) yields

D
qk+1

γf (x̄, xk+1)−Dqk
γf (x̄, xk) +Dqk

γf (xk+1, xk)

= 〈−Wk(xk+1 − xk) +Wk−1(xk − xk−1), xk+1 − x̄〉 − ‖xk+1 − x̄‖2
I−Wk

= −‖xk+1 − x̄‖2
I−Wk

− 〈Wk(xk+1 − xk), xk+1 − x̄〉

+ 〈Wk−1(xk − xk−1), xk − x̄〉+ 〈Wk−1(xk − xk−1), xk+1 − xk〉

≤ −‖xk+1 − x̄‖2
I−Wk

− 〈Wk(xk+1 − xk), xk+1 − x̄〉+ 〈Wk−1(xk − xk−1), xk − x̄〉

− ‖xk+1 − xk‖2
Wk
2

+ ‖xk − xk−1‖2
Wk−1

2

+ ‖xk+1 − xk‖2
Wk+Wk−1

2

,

(6.6)

where we have used the following inequality to obtain the third relation:

〈Wk−1(xk − xk−1), xk+1 − xk〉 ≤ ‖xk+1 − xk‖2
Wk−1

2

+ ‖xk − xk−1‖2
Wk−1

2

= ‖xk+1 − xk‖2
Wk+Wk−1

2
−Wk

2

+ ‖xk − xk−1‖2
Wk−1

2

.
(6.7)

Let Vk+1 = D
qk+1

γf (x̄, xk+1) + 〈Wk(xk+1 − xk), xk+1 − x̄〉 + ‖xk+1 − xk‖2
Wk
2

, which is
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positive if γ > λmax
m

since

Vk+1 = D
qk+1

γf (x̄, xk+1)− ‖xk+1 − x̄‖2
Wk
2

+
∥∥x′k+1 − x̄

∥∥2
Wk
2

≥ ‖xk+1 − x̄‖2
mγI−Wk

2

≥ ‖xk+1 − x̄‖2
mγ−λmax

2
I > 0,

(6.8)

where x′k+1 = 2xk+1 − xk and we have used Assumption 6.2 to obtain

Dqk
γf (xk+1, x̄) ≥ γm

2
‖xk+1 − x̄‖2 .

Then, (6.6) can be rewritten as

Dqk
γf (xk+1, xk)− ‖xk+1 − xk‖2

Wk+Wk−1
2

+ ‖xk+1 − x̄‖2
I−Wk

≤ Vk − Vk+1. (6.9)

Summing (6.9) over k from 0 through t− 1 leads to

t−1∑
k=0

(
Dqk
γf (xk+1, xk)− ‖xk+1 − xk‖2

Wk+Wk−1
2

)
+

t−1∑
k=0

‖xk+1 − x̄‖2
I−Wk

≤ V0 − Vt ≤ V0 <∞.
(6.10)

Applying the basic inequaltiy inG-space ‖a+ b‖2
G ≥ (1− 1

µ
) ‖a‖2

G+(1−µ) ‖b‖2
G , ∀µ ≥

0, we have

‖xk+1 − x̄‖2
I−Wk

≥ (1− 1

µ
) ‖xk+1 − xk‖2

I−Wk
+ (1− µ) ‖xk − x̄‖2

I−Wk
, (6.11)

where we require µ ∈ (0, 1). Thus, we have

t−1∑
k=0

(
Dqk
γf (xk+1, xk)− ‖xk+1 − xk‖2

(λmax+ρ)I

)
+

t−1∑
k=0

(1− µ) ‖xk − x̄‖2
I−Wk

≤ V0 <∞,

(6.12)

where ρ = (1−µ)(1−λmin)
µ

. Knowing that Wk is independent of the past states, taking

total expectation yields

t−1∑
k=0

E
[
‖xk+1 − xk‖2

( γm
2
−λmax−ρ)I

]
+

t−1∑
k=0

(1− µ)E
[
‖xk − x̄k‖2

I−W
]
≤ V0 <∞,

(6.13)

where we have used the fact that ‖xk − x̄‖2
I−W = ‖xk − x̄k‖2

I−W (cf. Assump-

tion 6.1) to replace the second term. Suppose γ > 2(λmax+ρ)
m

and let t→∞. Then,
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by Markov’s inequality [94], using (a+ b)2 < 2a2 + 2b2 we have for any ε > 0

∞∑
k=0

P (‖xk+1 − xk‖( γm
2
−λmax−ρ)I +

√
(1− µ) ‖xk − x̄k‖I−W > ε)

≤
2
∑∞

k=0E
[
‖xk+1 − xk‖2

( γm
2
−λmax−ρ)I

]
+ 2

∑∞
k=0(1− µ)E

[
‖xk − x̄k‖2

I−W
]

ε2

≤ 2V0

ε2
<∞.

(6.14)

Thus, by Borel-Cantelli Lemma and Prop. 1.2 [94, p.206], we have limk→∞ xk+1 =

xk and limk→∞ xk = x̄k with probability one. In addition, from (6.9) we know that

Vk is bounded and so is xk by (6.8). Thus, by standard analysis of weak cluster

points, we claim that the sequence {xk}k≥0 will converge almost surely to some

value x? ∈ span{1}. Then, invoking Lemma 5.4, we conclude that the sequence

{xk}k≥0 will converge almost surely to the optimal solution of the SOCP problem.

Moreover, let x̂t = 1
t

∑t−1
k=0 xk. Multiplying both sides of (6.13) by 1

t
and using the

Jensen’ inequality yields

E

[∥∥∥∥x̂t+1 − x̂t +
1

t
(x̂t+1 − x0)

∥∥∥∥2

( γm
2
−λmax−ρ)I

]
+ (1− µ)E

[∥∥x̂t − ˆ̄xt
∥∥2

I−W

]
≤ V0

t
,

(6.15)

where ˆ̄xt = 1
t

∑t−1
k=0 x̄k. Again, using the basic inequality ‖a+ b‖2 ≥ (1− 1

ν
) ‖a‖2 +

(1− ν) ‖b‖2 , ∀ν ≥ 0, we have

E
[
(1− ν) ‖x̂t+1 − x̂t‖2

( γm
2
−λmax−ρ)I

]
+ (1− µ)E

[∥∥x̂t − ˆ̄xt
∥∥2

I−W

]
≤ V0

t
+

1

t2
(
1

ν
− 1) ‖x̂t+1 − x0‖2

( γm
2
−λmax−ρ)I ,

(6.16)

where we require ν ∈ (0, 1). Since xt is a convergent sequence and so is x̂t, thus x̂t

is uniformly bounded, implying that the last term of the above relation is of O( 1
t2

).

It follows then that the fixed point residual in terms of the running average x̂t will

decrease at an ergodic rate of O(1
t
).
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6.4 Asynchronous Distributed Gradient Methods

As we have shown previously in Chapter 5, the D-FBBS algorithm, though permit-

ting better convergence rate, heavily depends on the topology of the network, re-

stricting its application to asynchronous implementation2 or being very complex in

analysis for asynchronous scenarios. In this section, we show that the asynchronous

version of AugDGM is, in fact, not only capable of dealing with stochastic networks

but also, most importantly, able to account for asynchronous implementation.

6.4.1 Asynchronous implementation

In distributed algorithms, due to the absent of global clocks or synchronization

mechanisms, it is very common that different agents will end up with acting very

differently, resulting in heterogeneous (asynchronous) issues. In asynchronous im-

plementation, agents are only to act when they are activated (i.e., awake) while

keeping idle when not (i.e., asleep). As a result, it is very likely that some may

execute more iterations and communicate more frequently than others.

We assume there exists a virtual global clock that ticks whenever any local clock

ticks. Let Tk be the time of k-th tick of the virtual global clock. Then, at each

tick Tk, a subset of agents will be activated and each of them attempts to give the

best estimate of the global optimum based on its local observation and the data

received from its immediate neighbors. Thus, during the interval [Tk, Tk+1), agents

not only need to update their local estimates but also have to make consensus with

its neighbors in order to achieve consistency on the estimates (cf. Figure 6.1). The

algorithm can be totally asynchronous and goes through the below three phases:

• Initial Phase: proper initialization,

• Action Phase: at each tick of virtual global clock, a subset of agents being

activated will receive the estimates from their active neighbors, update their

own estimates and then broadcast the new value to the neighbors,

• Idle Phase: doing nothing at this stage.

2Note that it differs from the randomized Gauss-Seidel iteration [65] in that the latter requires
the weight matrix to be the same all the time.
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In action phase, each agent carries out several local steps, such as local communi-

cation for consensus and local update for optimization (cf. Section 5.4).

8T3T1T ...
2

CommunicationComputation

1 3 5

4 6

8

7

2T 4T
6T

...

7T5T

Figure 6.1: An illustration of asynchronous implementation of distributed al-
gorithms.

6.4.2 AsynDGM algorithm for stochastic networks

We use the asynchronous version of AugDGM (termed AsynDGM) to solve the

problem over stochastic networks under asynchronous implementation. In partic-

ular, we use the following algorithm to solve the SOCP problem:

xk+1 = Wk [xk − γk � yk] (6.17a)

yk+1 = Wkyk + ∆gk, (6.17b)

where xk and yk are the collective vectors, ∆gk = g(xk+1)−g(xk) is the incremental

change of the gradients and γk = [γ1,k, γ2,k, ..., γm,k]
T is the vector of stepsize with

the component being zero when the corresponding agent is inactive.

Remark 6.1. Since we are focused on asynchronous implementation, Wk and

γk are dependent. That is, for any i ∈ V , agent i only carries out the above

computation steps when there is communication involved, i.e., wii 6= 1. It is

not difficult to see that if γi,k = 0, then xi,k+1 = xi,k and so is yi,k+1 = yi,k,

corresponding to the inactivity of the agent i. Indeed, the stepsize γi,k chosen by

agent i at time k is a random variable following Bernoulli process.

Let V+
k denote the set of agents being activated at time k while V−k the set of

deactivated agents. We summarize the proposed AsynDGM in Algorithm 4.

Different from the D-FBBS algorithm, we make the following assumption on the

weight matrix which is less restrictive than Assumption 6.1:
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Algorithm 4 AsynDGM for Stochastic Networks

1: Initialization: ∀ agent i ∈ V : xi,0 randomly assigned while yi,0 = g(xi,0).
2: Local Optimization: ∀ agent i ∈ V+

k , computes:

si,k = xi,k − γi,k · yi,k
xi,k+1 = si,k +

∑
j∈Ni∩V+

k

wij,k(sj,k − si,k) (6.18)

and set xi,k+1 = xi,k ∀ agent i ∈ V−k .
3: Dynamic Average Consensus: ∀ agent i ∈ V+

k , computes:

yi,k+1 = yi,k +
∑

j∈Ni∩V+
k

wij,k (yj,k − yi,k) + ∆gi,k (6.19)

and set yi,k+1 = yi,k ∀ agent i ∈ V−k .
4: Set k → k+1 and go to Step 2.

Assumption 6.3. The weight matrix is drawn i.i.d. from a probability space F =

(Ω,B,P) such that each Wk is doubly stochastic and E(W T
k Wk) has the second

largest eigenvalue strictly less than 1, i.e., ∀k ≥ 0,

1TWk = 1T , Wk1 = 1, (6.20a)

η2 =ρ

(
E(W T

k Wk)−
11T

m

)
< 1. (6.20b)

Further, we use Fk to denote the σ-algebra generated by the entire history of weight

matrix as well as the random initialization, i.e., for k ≥ 1,

Fk = {x0;Wi, 1 ≤ i ≤ k − 1}.

Remark 6.2. The above consensus protocol should be regarded as gossip-like

protocols as multiple links will be activated simultaneously at certain time tick [25].

Similar with that of fixed networks (cf. Definition 5.7), we introduce a new impor-

tant parameter that quantifies the variation of the stepsizes used by agents over

time, i.e., how “asynchronous” the algorithm is running.

Definition 6.5 (Heterogeneity of Stepsize II). Let γ be the vector of the stepsizes

sampled from a probability space by the agents. The heterogeneity of stepsize
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(HoS) is defined as

∆γ =
‖γ̃‖E
‖γ̄‖E

,

where γ̄ = Π‖γ is the average vector and γ̃ = γ − γ̄ is the deviation vector. If

all agents are using the same stepsize all the time, then ∆γ = 0, corresponding to

synchronous running of the algorithm.

6.4.3 Basic convergence analysis

The following analysis is carried out based on the approximate average analogue of

the algorithm as well as the approximation error between the distributed algorithm

and its centralized counterpart.

Lemma 6.6. Consider the distributed algorithm 4 and suppose Assumption 5.7

and 6.3 hold. Let Xe
k =

√∑k
i=0 ‖x̃i‖

2
E, Y

e
k =

√∑k
i=0 ‖ỹi‖

2
E, Z

e
k =

√∑k
i=0 ‖ȳi‖

2
E

be the expected “energy” from 0 to k, β = γmaxL and η′ = η + β(1 + ∆γ). If

β < (1−η)2

3+η+∆γ(1−η)
such that ρ1ρ2 < 1 and η′ < 1, then we have

Xe
k ≤

ρ1p2 + p1

1− ρ1ρ2

Ze
k +

q1 + ρ1q2

1− ρ1ρ2

(6.21a)

Y e
k ≤

ρ2p1 + p2

1− ρ1ρ2

Ze
k +

q2 + ρ2q1

1− ρ1ρ2

, (6.21b)

where ρ1 =
√

2γmax

1−η , p1 =
√

2∆γ σ̄γ
(1−η)

√
m

, q1 =
√

2‖x̃0‖E√
1−η2

, and ρ2 =
√

2(1+η)L
1−η′ , p2 =

√
2(1+∆γ)Lσ̄γ
(1−η′)

√
m

,

q2 =
√

2‖ỹ0‖E√
1−η′2

.

Proof. See Appendix B.

The following theorem is one of our main results that shows the basic convergence

of the proposed algorithm.

Theorem 6.2. Consider the distributed algorithm 4 with y0 = g(x0) and suppose

Assumptions 5.1, 5.6, 5.7 and 6.3 hold. Then, there exists a positive number

γ? := ϕ(η,∆γ)/L such that, if γmax < γ?, we have limk→∞ ‖xk − x̄k‖ = 0 a.s. and

limk→∞ f(xk) = f ? a.s., where f ? is the optimal value of the SOCP Problem.

Proof. Consider the sequence (5.43). Since f has Lipschitz gradient by Assump-

tion 5.7, we have for ∀x, x′ ∈ Rm

f(x′) ≤ f(x) + 〈g(x), x′ − x〉+
L

2
‖x′ − x‖2

.
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Taking conditional expectation on Fk and plugging x′ = x̄k+1 and x = x̄k into the

above relation yields

E [f(x̄k+1)|Fk] ≤ f(x̄k)− E [〈g(x̄k), γk � yk〉 |Fk] +
L

2
E
[
‖γk � yk‖2 |Fk

]
= f(x̄k)− E [〈g(xk), γk � yk〉 |Fk] +

L

2
E
[
‖γk � yk‖2 |Fk

]
− E [〈g(x̄k)− g(xk), γk � yk〉 |Fk]

= f(x̄k)− E [〈ȳk, γk � yk〉 |Fk] +
L

2
E
[
‖γk � yk‖2 |Fk

]
− E [〈g(x̄k)− g(xk), γk � yk〉 |Fk] ,

(6.22)

where we have used Proposition 5.1-(i) and Conservation Property III (cf. Lemma

5.6) to obtain the last inequality.

Consider the second term. Let µ̄γ = E [‖γ̄k‖] , µ̃γ = E [‖γ̃k‖]. Recall that γk is i.i.d.

and independent of Fk (cf. Assumption 6.3). Then, using Prop. 5.1-(iv) we have

E [〈ȳk, γk � yk〉 |Fk] = ‖ȳk‖E [‖γk � yk‖ |Fk] ≥
1√
m

(
µ̄γ ‖ȳk‖2 − µ̃γ ‖ȳk‖ ‖ỹk‖

)
.

(6.23)

For the third term, taking square root we have√
E
[
‖γk � yk‖2 |Fk

]
=

√
E
[∥∥γ̄k � ȳk + γ̃k � ỹk

∥∥2 |Fk
]

≤
√
E
[
‖γ̄k � ȳk‖2 |Fk

]
+

√
E
[∥∥γ̃k � ỹk∥∥2 |Fk

]
≤ 1√

m
(σ̄γ ‖ȳk‖+ σ̃γ ‖ỹk‖) .

(6.24)

Now, let us consider the last deviate term. By Assumption 5.7 and using Cauchy-

Schwarz inequality, we obtain

E [〈g(x̄k)− g(xk), γk � yk〉 |Fk] ≤ E [‖g(x̄k)− g(xk)‖ ‖γk � yk‖ |Fk]

≤ L ‖x̃k‖E [‖γk � yk‖ |Fk] ≤ L ‖x̃k‖
√
E
[
‖γk � yk‖2 |Fk

]
≤ L√

m
(σ̄γ ‖x̃k‖ ‖ȳk‖+ σ̃γ ‖x̃k‖ ‖ỹk‖) .

(6.25)
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Combining (6.22)–(6.25) and letting vt = f(x̄t)− f ? leads to

E [vk+1|Fk] ≤ vk −
1√
m

(
µ̄γ ‖ȳk‖2 − µ̃γ ‖ȳk‖ ‖ỹk‖

)
+
L

m

(
σ̄2
γ ‖ȳk‖

2 + σ̃2
γ ‖ỹk‖

2)
+

L√
m

(σ̄γ ‖x̃k‖ ‖ȳk‖+ σ̃γ ‖x̃k‖ ‖ỹk‖) .

(6.26)

Taking the total expectation and summing the above inequality over k from 0 to

t, rearranging terms we have

E [vk+1] ≤E [v0]−
(
µ̄γ√
m
−
σ̄2
γL

m

) t∑
k=0

E
[
‖ȳk‖2]+

µ̃γ√
m

t∑
k=0

E [‖ȳk‖ ‖ỹk‖]

+
σ̃2
γL

m

t∑
k=0

E
[
‖ỹk‖2]+

σ̄γL√
m

t∑
k=0

E [‖x̃k‖ ‖ȳk‖] +
σ̃γL√
m

t∑
k=0

E [‖x̃k‖ ‖ỹk‖] .

(6.27)

Using Cauchy-Schwarz inequality (cf. Lemma 6.1) yields

E [vt+1] ≤ E [v0]− aZe
t

2 + bZe
t Y

e
t + cY e

t
2 + dXe

tZ
e
t + eXe

t Y
e
t , (6.28)

where

a =
µ̄γ√
m
−
σ̄2
γL

m
, b =

µ̃γ√
m
, c =

σ̃2
γL

m
, d =

σ̄γL√
m
, e =

σ̃γL√
m
.

Let us first consider the first term. Recalling that µ̄γ = E [‖γ̄k‖], we have

a ≥ 1√
m
E

[
‖γ̄k‖√
mγmax

‖γ̄k‖
]
− L

m
σ̄2
γ ≥

(
1

β
− 1

)
R,

where β = γmaxL and R =
σ̄2
γL

m
.

For the second term, using Cauchy-Schwarz inequality yields

b =
µ̃γ√
m
≤ σ̃γ√

m
=
σ̄γ∆γ√
m
.

Suppose β < (1−η)2

3+η+∆γ(1−η)
such that ρ1ρ2 < 1 and η′ < 1. Since Assumptions 5.7

and 6.3 hold, invoking Lemma 6.6 we have

bZe
t Y

e
t ≤ b1Z

e
t

2 + b2Z
e
t ,

where

b1 =
2∆γ(1 + η) +

√
2∆γ(1 + ∆γ)(1− η)

(1− η)(1− η′)− 2(1 + η)β
R, b2 > 0.
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Similarly, applying the above analysis to the rest terms yields
cY e

t
2 ≤ c1Z

e
t

2 + c2Z
e
t + c3,

dXe
tZ

e
t ≤ d1Z

e
t

2 + d2Z
e
t ,

eXe
t Y

e
t ≤ e1Z

e
t

2 + e2Z
e
t + e3,

where

c1 = β2

(
2∆γ(1 + η) +

√
2∆γ(1 + ∆γ)(1− η)

(1− η)(1− η′)− 2(1 + η)β

)2

·R,

d1 =
2(1 + ∆γ)β +

√
2(1− η′)∆γ

(1− η)(1− η′)− 2(1 + η)β
·R,

e1 = β
2∆γ(1 + η) +

√
2∆γ(1 + ∆γ)(1− η)

(1− η)(1− η′)− 2(1 + η)β
· 2(1 + ∆γ)β +

√
2(1− η′)∆γ

(1− η)(1− η′)− 2(1 + η)β
·R,

c2 > 0, c3 > 0, d2 > 0, e2 > 0, e3 > 0.

Combining the right-hand side terms of (6.28) leads to

E [vt+1] ≤ E [v0]− a0Z
e
t

2 + b0Z
e
t + c0, (6.29)

where a0, b0, c0 are constants depending on η, β and ∆γ. Since vt ≥ 0,∀t > 0,

(6.29) can be rewritten as

−a0Z
e
t

2 + b0Z
e
t + c0 + E [v0] ≥ 0. (6.30)

Additionally, it is not difficult to show that a0 > 0 when the stepsize is sufficiently

small, i.e., β � 1.

Since b0 > 0, c0 + E [v0] > 0, it follows from (6.30) that

lim
t→∞

Ze
t ≤ Ze

∞ <∞. (6.31)

Thus, by Markov’s inequality [94], we have for any ε > 0

∞∑
k=0

P (‖ȳk‖ > ε) ≤
∑∞

k=0 ‖ȳk‖
2
E

ε2
=
Ze
∞

2

ε2
<∞.
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Then, by Borel-Cantelli Lemma and Proposition 1.2 [94, p.206], we have limk→∞ ‖ȳk‖ =

0 a.s.. Also, from (6.21b) of Lemma 6.6 and (6.31), we know that

lim
k→∞

Y e
k ≤ Y e

∞ ≤
(ρ2p1 + p2)Ze

∞ + (q2 + ρ2q1)

(1− ρ1ρ2)
<∞.

which, as shown above, yields limk→∞ ‖ỹk‖ = 0 a.s..

Likewise, using (6.21a) of Lemma 6.6 and (6.31) we have limk→∞ ‖x̃k‖ = 0 a.s..

In addition, using (a+ b)2 ≤ 2a2 + 2b2,∀a, b ∈ R, (6.26) can be rewritten as

E [vk+1|Fk] ≤ vk −
µ̄γ√
m
‖ȳk‖2 + εk (6.32)

where

εk =
L(σ̄γ + σ̃γ)

2
√
m

‖x̃k‖2 +

(
µ̃γ + Lσ̃γ

2
√
m

+
Lσ̃2

γ

m

)
‖ỹk‖2

+

(
µ̃γ + Lσ̄γ

2
√
m

+
Lσ̄2

γ

m

)
‖ȳk‖2 .

(6.33)

Moreover, we have shown in the above that
∑∞

k=0E
[
‖x̃k‖2], ∑∞k=0 E

[
‖ỹk‖2] and∑∞

k=0E
[
‖ȳk‖2] are all bounded, thus using Lemma 6.2 and 6.3 we obtain

∑∞
k=0 εk <

∞ a.s.. Since εk > 0, Lemma 6.5 applies and the sequence {vk}k≥0 converges to

some random variable almost surely and thus bounded almost surely and so is the

sequence {f(x̄k)}k≥0. Since f is coercive and thus has compact level set (cf. As-

sumption 5.6 and Remark 5.11), this implies that x̄k is bounded with probability

one. Thus, there must exists a subsequence x̄kj converging to some limit point

x̄∞ for which Π‖g(x̄∞) = 0, i.e.,
∑m

i=1 gi(θ∞) = 0, for certain θ∞ ∈ R (note that

limk→∞ ȳk = Π‖g(xk) = 0 and limk→∞ x̃k = 0). This in turn, by convexity of f ,

implies that x̄∞ is the optimal solution to the EDOP problem. Also, from (5.43)

and knowing that γk � yk converges to 0, we observe that limk→∞ x̄k+1 − x̄k = 0,

which implies that the subsequence x̄kj−1 also converges to the same limit point

x̄∞. In all, we conclude that

lim
k→∞

f(x̄k) = f(x̄∞) = f ? a.s.. (6.34)

Further, since limk→∞ ‖x̃k‖ = 0 a.s. as shown above, by [94, Th. 10.1, p.244],

using the continuity of f and norm and the fact of the convergence of the sequence
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{f(x̄k)}k≥0 we obtain

lim
k→∞

(f(xk)− f(x̄k)) = lim
k→∞

(f(x̄k + x̃k)− f(x̄k))

= f( lim
k→∞

x̄k + 0)− f( lim
k→∞

x̄k) = 0 a.s..
(6.35)

By [94, Th. 11.1], using (6.34) and (6.35) completes the proof.

Corollary 6.3. Consider the algorithm (6.17) with y0 = g(x0). Suppose all the

assumptions of Theorem 6.2 hold and the computation processes of agents are

synchronous (i.e., ∆γ = 0). If γmax <
η2−η+4−

√
η4−6η3+13η2−4η+12

2(1+η)L
, then we have

limk→∞ ‖x̃k‖ = 0 a.s. and limk→∞ f(xk) = f ?.

Proof. Since ∆γ = 0, the coefficient a0 of (6.29) can be calculated as follows:

a0 =

[(
1

β
− 1

)
− 2β

(1− η)(1− η′)− 2(1 + η)β

]
·R.

Since β < (1−η)2

3+η+∆γ(1−η)
. Then, simple calculation shows that a0 > 0 is equivalent to

(1 + η)β2 −
(
η2 − η + 4

)
β + (1− η)2 > 0.

Then, knowing that β = γmaxL and taking the smaller root completes the proof.

Figure 6.2 plots the estimated upper bound of β = γmaxL in terms of the spectral

radius η with ∆γ = 0 to ensure certain conditions for convergence.
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Figure 6.2: Plots of the estimated upper bound of β versus η with ∆γ = 0 to
ensure certain conditions: η′ < 1, ρ1ρ2 < 1 and µ > 0.
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6.4.4 Convergence rate analysis for strongly convex func-

tions

We make a stronger assumption on the cost function in order to derive the conver-

gence rate for the proposed algorithm. Note that the following assumption is not

necessary when the algorithm is synchronously running3.

Assumption 6.4. Each objective function fi is li-strongly convex with li > 0.

Remark 6.3. The above assumption implies the uniqueness of the optimal solu-

tion. In addition, it is easy to show that the overall function f is also l-strongly

convex with l = min{li}.

Theorem 6.4. Consider the distributed algorithm 4 with y0 = g(x0). Let x̂k =
1
t

∑t−1
k=0 xk be the running average. Suppose Assumptions 5.1, 5.7, 6.3 and 6.4 hold.

Then, there exists a positive number γ? := ϕ(η,∆γ)/L such that, if γmax < γ?, we

have E
[∥∥x̂k − ˆ̄xk

∥∥] ≤ O( 1√
k
) and E [|f(x̂k)− f ?|] ≤ O( 1√

k
).

Proof. Consider the sequence (5.43). Let x? ∈ R be an optimum of the EDOP

problem. Then, we have

E
[
‖x̄k+1 − x?‖2 |Fk

]
= E

[
‖x̄k − γk � yk − x?‖2 |Fk

]
≤ ‖x̄k − x?‖2 − 2E [〈γk � yk, x̄k − x?〉 |Fk] + E

[
‖γk � yk‖2 |Fk

]
.

(6.36)

Let us first consider the second term.

E [〈γk � yk, x̄k − x?〉 |Fk]
(a)
= E [〈γk � ȳk, x̄k − x?〉 |Fk] + E

[〈
γ̃k � ỹk, x̄k − x?

〉
|Fk
]

(b)

≥ µ̄γ√
m
〈ȳk, x̄k − x?〉 −

µ̃γ√
m
‖ỹk‖ ‖x̄k − x?‖

(c)

≥ µ̄γ√
m

〈
Π‖g(x̄k), x̄k − x?

〉
− µ̃γ√

m
‖ỹk‖ ‖x̄k − x?‖

+
µ̄γ√
m

〈
Π‖g(xk)− Π‖g(x̄k), x̄k − x?

〉
,

(6.37)

where (a) is due to Prob. 5.1-(iii), (b) is obtained from Prob. 2-(iv) and (c) is derived

from the conversation property ȳk = ḡk = Π‖g(xk),∀k > 0 (cf. Lemma 5.6).

3In this case, the convergence proof follows from the similar lines as in Theorem 5.4.
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Since the cost function f is l-strongly convex and has Lipschitz gradient, we have

‖x̄k − x?‖ ≤
1

l

∥∥Π‖g(x̄k)
∥∥ =

1

l

∥∥Π‖g(x̄k)− Π‖g(xk) + Π‖g(xk)
∥∥

≤ 1

l
‖ȳk‖+

L

l
‖x̃k‖ ,

(6.38)

and using āT b̄ = aT b̄ (cf. Proposition 5.1-(i)) to eliminate Π‖ in the last inequality

of (6.37) we further have

E [〈γk � yk, x̄k − x?〉 |Fk]

≥ µ̄γ√
m
〈g(x̄k), x̄k − x?〉 −

µ̃γ√
m
‖ỹk‖ ‖x̄k − x?‖+

µ̄γ√
m
〈g(xk)− g(x̄k), x̄k − x?〉

≥ µ̄γ√
m

(f(x̄k)− f ?)−
(
µ̃γ√
m
‖ỹk‖+

µ̄γ√
m
L ‖x̃k‖

)(
1

l
‖ȳk‖+

L

l
‖x̃k‖

)
.

(6.39)

Combining (6.36) and (6.39) and using (6.24) and the relation 2ab ≤ a2 + b2 yield

E
[
‖x̄k+1 − x?‖2 |Fk

]
≤ ‖x̄k − x?‖2 − 2µ̄γ√

m
(f(x̄k)− f ?) + εk, (6.40)

where

εk =
(µ̄γ + µ̃γ)L+ 2µ̄γL

2

l
√
m

‖x̃k‖2

+

(
(1 + L)µ̃γ
l
√
m

+
2σ̃2

γ

m

)
‖ỹk‖2 +

(
µ̃γ + µ̄γL

l
√
m

+
2σ̄2

γ

m

)
‖ȳk‖2

(6.41)

Using convexity of f , we have

f(xk)− f(x̄k) ≤ 〈g(x̄k), xk − x̄k〉 .

Since f is strongly convex thus coercive, it follows from Theorem 6.2 that there

exists a γ? such that if γmax ≤ γ?, x̄k will be bounded almost surely.

Thus, knowing that the gradient g is bounded for any compact domain D, i.e.,

‖g(x)‖ ≤ C, x ∈ D, we further have

|f(xk)− f(x̄k)| ≤ ‖g(x̄k)‖ ‖xk − x̄k‖ ≤ C ‖x̃k‖ . (6.42)

Then, using the above equation and the relation |a|+|b| ≥ |a+ b| ,∀a, b ∈ R, (6.40)



102 6.4. Asynchronous Distributed Gradient Methods

can be rewritten as

E
[
‖x̄k+1 − x?‖2 |Fk

]
≤ ‖x̄k − x?‖2 − 2µ̄γ√

m
|f(xk)− f ?|+

2µ̄γC√
m
‖x̃k‖+ εk. (6.43)

Taking the total expectation of the above inequality and rearranging terms we have

2µ̄γ√
m
E [|f(xk)− f ?|]

≤ E
[
‖x̄k − x?‖2]− E [‖x̄k+1 − x?‖2]+

2µ̄γC√
m
E [‖x̃k‖] + E [εk] .

(6.44)

Summing the above inequality over k from 0 to t− 1 leads to

2µ̄γ√
m

t−1∑
k=0

E [|f(xk)− f ?|] ≤ E
[
‖x̄0 − x?‖2]

− E
[
‖x̄t − x?‖2]+

2µ̄γC√
m

t−1∑
k=0

E [‖x̃k‖] +
t−1∑
k=0

E [εk] .

(6.45)

From Theorem 6.2, we know that
∑∞

k=0E [εk] < B0 a.s. with sufficiently small γmax,

where B0 is some positive number. Also, using the Cauchy-Schwarz inequality

a1 + a2 + ...+ am ≤
√
m
√
a2

1 + a2
2 + ...+ a2

m,

where a1, a2, ..., am are positive numbers, we have

t−1∑
k=0

E [‖x̃k‖] ≤
√
t

√√√√ t−1∑
k=0

E [‖x̃k‖]2 ≤
√
t

√√√√ t−1∑
k=0

‖x̃k‖2
E. (6.46)

Thus, dividing both sides of (6.45) by 2µ̄γ√
m
t we have

1

t

t−1∑
k=0

E [|f(xk)− f ?|] ≤
√
m (A0 +B0)

2µ̄γt
+
CX∞√

t
. (6.47)

where X∞ = limt→∞

√∑t−1
k=0 ‖x̃k‖

2
E and A0 = E

[
‖x̄0 − x?‖2].

Let ˆ̄xt = 1/t
∑t−1

k=0 x̄k be the running average. Applying Jensen inequality to the

above relation (6.47) we have

E [|f(x̂t)− f ?|] ≤
1

t

t−1∑
k=0

E [|f(xk)− f ?|] ≤
√
m (A0 +B0)

2µ̄γt
+
CX∞√

t
. (6.48)
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In addition, diving both sides of (6.46) by t we have

1

t

t−1∑
k=0

E [‖x̃k‖] ≤
1√
t

√√√√ t−1∑
k=0

‖x̃k‖2
E ≤

1√
t
X∞. (6.49)

Let ˆ̃xk = 1/t
∑t−1

k=0 x̃k. Applying the Jensen inequality we have E
[∥∥x̂k − ˆ̄xk

∥∥] ≤
1
t

∑t−1
k=0 E [‖x̃k‖] ≤ 1√

t
X∞. The rest of the proof follows from the fact that X∞ is

bounded as previously shown in Theorem 6.2 with sufficiently small γmax.

Corollary 6.5. Consider the algorithm (6.17) with y0 = g(x0). Suppose all the

assumptions of Theorem 6.4 hold and the computation processes of agents are syn-

chronous (i.e., ∆γ = 0). Then, if γmax <
η2−η+4−

√
η4−6η3+13η2−4η+12

2(1+η)L
, we have

E
[∥∥x̂k − ˆ̄xk

∥∥] ≤ O( 1√
k
) and E [|f(x̂k)− f ?|] ≤ O( 1√

k
).

Proof. The proof is similar to that of Corollary 6.3.

6.5 Application to Sensor Fusion Problems

In this section, we report some simulations to show the effectiveness of the proposed

algorithms over stochastic and asynchronous scenarios. We consider the same dis-

tributed estimation problem as before (cf. Section 5.5) over a stochastic network

(cf. Figure 6.3a) where each communication link is subject to random failure fol-

lowing certain Bernoulli Process. That is, in each iteration, each communication

link will be activated with probability of p and deactivated with 1−p. Thus, when

p = 1, the random network will reduce to a fixed network.

Parameter Setting: We use the same parameter setting as before (cf. Sec-

tion 5.5) except for that we use λ = 0.1 for the D-FBBS algorithm for the require-

ment of strong convexity of the cost function and the weight matrix now becomes

Wk = I − αkL with αk = 1
2+dmax,k

for D-FBBS and αk = 2dmax,k for AsynDGM,

where dmax,k is the maximum degree of the communication graph at time k [89, 92].

The simulation is carried out over a stochastic network and all the results are aver-

aged over 20 Monte-Carlo runs. We conduct two separate simulations for D-FBBS

and AsynDGM over a stochastic scenario (cf. Figure 6.3a) and an asynchronous

scenario (cf. Figure 6.3b), respectively. The result of D-FBBS is then compared

with DSM [27] in terms of the relative FPR and the result of AsynDGM with the
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(a) stochastic scenario (b) asynchronous scenario

Figure 6.3: A snapshot of a random sensor network of 50 nodes. The red lines
denote the communication links being activated while the gray lines stand for
no communication being carried out at this moment. Correspondingly, the red
dots denote the active nodes while the gray dots stand for the deactive nodes.

best known asynchronous distributed algorithm4–RandBroadcast [62]–in terms of

the relative objective error (OBE), i.e., ‖f(xk)−f?‖
‖f(x0)−f?‖ , respectively.
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Figure 6.4: Performance Comparison between D-FBBS and DSM. (a) Plot of
the number of iterations required to reach a fixed accuracy ε = 0.001 for both
DSM and D-FBBS. The stepsize γ = 2/k for DSM is optimized by hand while
the stepsize γ = 10 for D-FBBS is calculated based on Theorem 6.1. The results
are averaged over 20 Monte-Carlo runs. (b) Plot of the relative FPR versus the
number of iterations for both DSM and D-FBBS under two different probabilities

of link failure, i.e., p = 0.1 (low) and p = 0.9 (high).

Discussions: Figure 6.4a and Figure 6.4b illustrate the simulation results for

stochastic networks. Figure 6.4a shows that the proposed D-FBBS algorithm al-

ways needs less iterations to reach the specified accuracy of ε = 0.001 as compared

4In our simulation, we use gossip-like protocols (cf. Remark 6.2) rather than the random
broadcast scheme for both algorithms for fair comparison.
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with DSM. The advantage is more significant when the communication link has

low probability of being activated at each iteration, i.e., communication process

being more “asynchronous”. In particular, we can observe from Figure 6.4b that

the proposed D-FBBS algorithm require Nε = 95 iterations to reach the specified

accuracy while DSM needs Nε = 125 iterations when the communication link is

activated with a high probability of p = 0.9. In addition, when p becomes small

(e.g., p = 0.1), the difference of iterations required is enlarged, i.e., Nε = 285 for D-

FBBS and Nε = 520 for DSM. Moreover, similar to the case of fixed network, both

algorithms have similar performance in the beginning but the proposed D-FBBS

algorithm still progresses at a linear convergence rate afterwards.
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(a) High probability of link fail-
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(b) Low probability of link failure

Figure 6.5: Plot of the relative objective error with respect to the number
of iterations for both AsynDGM and RandBroadcast algorithms under: (a) low

and (b) high probability of link failure.

Figure 6.5 plots the relative objective error of both AsynDGM and RandBroadcast

algorithms, which are asynchronously implemented, with respect to the number of

iterations over a stochastic network under high and low probability of link failure

respectively. It follows from the figure that the two algorithms have similar con-

vergence performance at the initial stage. However, RandBroadcast using constant

stepsize gets stuck after several iterations which can be alleviated to some extent

by employing decaying stepsize 1
Γi,k

5, while the proposed AsynDGM algorithm still

progresses almost linearly to the optimum. Different from D-FBBS, the advantage

of the AsynDGM algorithm over the RandBroadcast algorithm will be more sig-

nificant when the communication network has low probability of link failure (i.e.,

the network being more “synchronous”).

5Here, Γi,k denotes the number of updates agent i has carried out before time k [62].



106 6.6. Summary

6.6 Summary

In this chapter, we have investigated the convergence performance of the two pre-

viously proposed algorithms, namely D-FBBS and AsynDGM, over stochastic net-

works even under asynchronous implementation. We have shown that both algo-

rithms are able to seek the exact optimum even with constant stepsizes so long as

it is chosen properly within certain theoretical bound. For the D-FBBS algorithm

under stochastic networks, with an extra assumption of strong convexity on the

cost functions, we have shown that the algorithm is guaranteed to converge to the

optimum almost surely and an ergodic convergence rate of O(1/
√
k) can be estab-

lished in terms of FPR. Further, for the AsynDGM algorithm under asynchronous

implementation, we have shown its convergence to the optimum almost surely for

coercive and convex functions with Lipschitz gradients and established an ergodic

convergence rate of O(1/
√
k) in terms of OBE for functions that are also strongly

convex. Note that the above obtained convergence rates are the known best rates

under the same setting as this research work. We have also reported an example

to illustrate the effectiveness of both proposed algorithms.



Chapter 7

Conclusion and Future Work

7.1 Discussions and Summary

In this thesis, we have proposed several schemes and algorithms for the distributed

optimization problem involved in large-scale networked systems that arises from

many application domains, such as sensor fusion, resource allocation and dis-

tributed learning. Distributed methods for optimization problems in these systems

are very important either from the perspective of robustness or computational com-

plexity. Many existing works have been devoted to this area but most of them are

not able to account for practical issues such as heterogeneity, varying topology and

asynchronous implementation that are common in real applications. In this re-

search work, we aim to develop new schemes and algorithms that are more capable

in dealing with the above issues. Specifically, we have made several contributions

to the community of distributed optimization in the following aspects:

• A general philosophy has been proposed based on the fundamental analysis

of consensus mechanism for coordination, and it allows us to easily come up

with certain distributed schemes and algorithms for specific problems.

• A novel distributed derivative-free approach (cf. D-SPA) has been proposed to

solve the dynamic optimal consensus problem in large-scale networked control

systems based on simultaneous perturbation and consensus strategies. The

proposed scheme is shown to be able to achieve Pareto-optimum rather than

Nash equilibrium of the whole system under control. A semi-global stability

107
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result has also been obtained for more possible applications. Indeed, it is

expected that the proposed scheme is applicable to many other large-scale

dynamic systems where the analytical form of the performance is hard to

obtain and distributed implementation is a necessity.

• Two basic distributed algorithms have been proposed to solve the optimal

consensus problem in large-scale sensor networks under fixed topology and

synchronous implementation. Both are able to seek the exact optimum

even with constant stepsize without the assumption of boundedness of (sub)-

gradient. A non-ergodic convergence rate of o( 1
k
) in terms of FPR has been

established for the D-FBBS algorithm for general proper convex functions

while an ergodic convergence rate of O( 1√
k
) in terms of OBE is obtained for

the AugDGM algorithm under homogeneous computation (i.e., using same

stepsizes) for coercive and convex functions having Lipschitz gradients. What

is more interesting is that the techniques used in developing these algorithms

such as the Bregman method and operator splitting, turns out to be very

useful and, in fact, provide a framework for us to easily come up with certain

distributed algorithms for specific problems with certain structure.

• The proposed algorithms have been shown to be very capable in dealing with

stochastic networks even under asynchronous settings. In particular, both

algorithms are shown to be able to seek the exact optimum almost surely

even with constant stepsizes. Besides, an ergodic convergence rate of O( 1
k
)

in terms of FPR has been established for strongly convex functions for the

D-FBBS algorithm over stochastic networks and an ergodic convergence rate

of O( 1√
k
) in terms of OBE is obtained for strongly convex functions with

Lipschitz gradients for the AsynDGM algorithm over stochastic networks

even under asynchronous implementation. To the best of our knowledge,

these are the known best rates under the same setting as this work. In

this regard, our result is a significant improvement of the existing distributed

algorithms, making them amenable to stochastic and asynchronous scenarios.

7.2 Extensions and Future Work

The results developed in this research work are still quite limited in the sense that

the convergence performance of the proposed distributed schemes and algorithms
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are always inferior to their centralized counterparts and the difference is even more

significant when it comes to time-varying topology and asynchronous implementa-

tion. Thus, it would be of great interest and importance to find the fundamental

(theoretical) limit of the convergence performance for distributed methods over

general (unbalanced directed) graphs where algorithms may run in a totally asyn-

chronous way, which will also serve as a general guideline in designing these meth-

ods as well as the practical experiments used for verification. Some extensions can

also be made to account for constraints, quantization effects as well as asymmetric

issues induced by general graphs and asynchrony of algorithms.

7.2.1 Large-scale distributed learning

Distributed optimization has recently become a hot topic in the machine learning

community due to its ability to deal with large-scale datasets. Most existing algo-

rithms, however, is not distributed and require somewhat supervisory control over

the whole network. Thus, it would be of interest if we can design some distributed

algorithm that can run over a large-scale data processing center where several pro-

cessors are geographically scattered and each is responsible for a partial dataset.

In machine learning, we always encounter the optimization problem of composite

cost functions with a regularization term encoding some prior knowledge or the

feasible set (e.g., indicator function). An optimal consensus problem for this kind

of cost function can be thus depicted as follows:

min
θ∈Rd

f(θ) =
m∑
i=1

fi(θ) + gi(θ),

where gi is the regularization term associated with agent i. The above formulation

is, in fact, corresponding to splitting across datasets in machine learning.

7.2.2 Constraints and quantization effects

In most real applications, systems are usually subject to some constraints, be it

local (hard) Xi ⊂ Rd1 or global (soft) g(θ) ≤ 0 (cf. Equation (7.1)). Thus, it is

desirable to design some algorithm that can account for these constraints. However,

1Note that the intersection of all local sets Xi can be empty.
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introducing global constraints may render the problem to be non-decomposable,

imposing much challenges on the design of distributed algorithms.

min
{θ∈∩iXi}

f(θ) =
m∑
i=1

fi(θ), s.t. gi(θ) ≤ 0, ∀i ∈ V . (7.1)

On the other hand, since distributed optimization is carried out over a network

which is unreliable and has limited bandwidth, quantization is necessary for real

implementation. Thus, it would be of interest if we can design a proper encoder/de-

coder or event-trigger-based mechanism to alleviate the communication burden and

design new algorithms that can account for packet loss and delay or investigate the

performance limit of algorithms with respect to these parameters.

7.2.3 Towards general graphs and total asynchrony

It is well known that doubly-stochastic weight matrix is difficult to design and

maintain in real applications where the graph may not be balanced and the algo-

rithm may be executed asynchronously. There are many existing algorithms, such

as those based on the push-sum protocol, that can operate on column-stochastic

weight matrix which are relatively simple to design. It would be of interest if we

could come up with a new way for compensating the errors either due to the asym-

metric “data flow” over unbalanced graphs or the asynchronous implementation of

algorithms over heterogeneous nodes or both simultaneously based on fixed point

and operator splitting theory. Note that the effect induced by unbalanced graphs

somewhat resembles that of asynchronous implementations.

In this thesis, we have observed that consensus-based algorithms generally require

weak assumptions on the communication graph but the obtained convergence rates

are always inferior to its centralized counterpart. In contrast, decomposition-based

algorithms are designed based on well-established optimization theory and can usu-

ally obtain very good convergence rates that are comparable with the centralized

counterparts but they require strict assumptions on the weight matrix, making it

not so practical in real applications. Thus, it would be of great interest to investi-

gate the possibility of filling the gap between consensus-based and decomposition-

based approaches especially in dealing with stochastic and asynchronous scenarios

by seeking new mathematical tools for alternative ways of proofs.



Appendix A

Proofs for Part I

A.1 Proof of Lemma 4.2

Consider the system (4.7). Let Ω be any given arbitrary compact domain. Since

ψ is locally Lipschitz in θ and
∥∥µ
a

∥∥ is bounded according to Definition 4.5. Thus,

for any θ ∈ Ω the average

ψav(θ) =
1

T

∫ T

0

[ψ(θ + µ(τ)) + C]⊗ µ(τ)

a
dτ

exists (cf. Definition 4.2). Let us consider the change of variables θ = θav −
εu(t, θav), where ε = aδ and

u(t, θav) =

∫ t

0

[ψ(θav + µ(τ)) + C]⊗ µ(τ)

a
− ψav(θav)dτ.

Then, differentiating both sides gives

θ̇ = θ̇av − ε∂u
∂t
− ε ∂u

∂θav
θ̇av.
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Substituting (4.7) into the above equation and simple calculation yields[
I − ε ∂u

∂θav

]
θ̇av = ε

∂u

∂t
− δ[ψ(θ + µ) + C]⊗ µ

= ε
[
ψ(θav + µ)⊗ µ

a
− ψav(θav)

]
− δψ(θ + µ)⊗ µ

= −εψav(θav) + δ [ψ(θav + µ)− ψ(θav − εu+ µ)]⊗ µ

= −εψav(θav) + ε2u

[
∂ψ

∂θ
(ξ + µ)⊗ µ

a

]
,

(A.1)

where ξ ∈ {θ| ‖θ − θav‖ ≤ εu} and we have used the mean value theorem to

obtain the last equality. In addition, for any θav ∈ Ω, ∂u
∂θav

is bounded such that

the inverse matrix
[
I − ε ∂u

∂θav

]−1
exists and can be approximated as I + O(ε) for

sufficiently small ε. Thus, knowing that u, ∂ψ
∂θ

and
∥∥µ
a

∥∥ are bounded for ∀θ ∈ Ω (cf.

Definition 4.5 and 4.2), the above dynamic equation can be rewritten as follows:

θ̇av = −εψav(θav) +O(ε2). (A.2)

Moreover, since ψ is a C2 function, by Taylor expansion, we have the following

first-order approximation for the average function as follows:

ψav(θav) =
1

T

∫ t+T

t

[ψ(θav + µ(τ)) + C]⊗ µ(τ)

a
dτ

=
1

T

∫ t+T

t

[
(ψ(θav) +∇ψ(θav)Tµ+ C)⊗ µ

a
+ r
]
dτ

=
1

T

∫ t+T

t

[ψ(θav) + C]⊗ µ(τ)

a
dτ

+

[
1

Ta

∫ t+T

t

µ(τ)T ⊗ µ(τ)dτ

]
· ∇ψ(θav) + r

= a∇ψ(θav) + r,

(A.3)

where r = O(a2) and ∇ denotes the gradient operator and we have employed

certain conditions of Definition 4.5 and the following relation to obtain the last

equality:

(aT · b)⊗ c = (bT ⊗ c) · a,

where a, b and c are all column vectors with the same dimension. Then, combining

Equation (A.3) with Equation (A.2) completes the proof.
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A.2 Proof of Lemma 4.4

Consider a system ẋ = φ(t, x, ε) with parameter ε ∈ R. Given any pair (δ,∆)

with δ < ∆, define a compact domain Ω : {x|δ < ‖x‖ < ∆}. Since the nominal

system ẋ = φ(t, x, 0) is UGAS and φ and its partial derivatives w.r.t. (x, ε) are

locally Lipschitz in Rn ×R, uniformly in t, by Khalil [77, Th. 4.16] there exists a

continuously differentiable function W : R≥0×Ω→ R≥0 that satisfies the following

inequalities:

γ1(‖x‖) ≤ W (t, x) ≤ γ2(‖x‖)
∂W

∂t
+
∂W

∂x
φ(t, x, 0) ≤ −γ3(‖x‖)

(A.4)

for all x ∈ Ω and some K∞ functions γ1 to γ3.

Then, taking the derivative of W along the trajectory of the original system gives

Ẇ =
∂W

∂t
+
∂W

∂x
φ(t, x, 0) +

∂W

∂x

T

[φ(t, x, ε)− φ(t, x, 0)]

≤ −γ3(‖x‖) +

∥∥∥∥∂W∂x
∥∥∥∥ ‖φ(t, x, ε)− φ(t, x, 0)‖

≤ −γ3(‖x‖) + kL1ε < 0. ∀ε < min{γ3(δ)

kL1

, ε0},

(A.5)

where k is the upper bound of
∥∥∂W
∂x

∥∥ on x ∈ Ω, ε0 is a small positive number and

L1 is the Lipschitz constant of φ in [0, ε0]. It follows from the above that there

exist ε∗ such that the system is UGAS for each ε ∈ (0, ε∗). Then, by Definition 4.1,

we claim that the system is USPAS on ε.





Appendix B

Proofs for Part II

B.1 Proof of Lemma 5.1

Since null(P ) = span{1}, we have rank(P ) = m − 1. In addition, y ∈ span⊥{1}
implies that 1Ty = 0 and in turn that rank([P y]) = m− 1. Thus, by basic linear

algebra, there exists a solution y′ such that Py′ = y. Since y′ ∈ span⊥{1} implying

that 1Ty′ = 0, we have an augmented system of equation [P T 1]Ty′ = [y 0]T . Since

rank([P T 1]) = m, again by basic linear algebra, we conclude that y′ is unique.

The proof for the reverse is similar.

B.2 Proof of Lemma 5.4

Since {xk}k≥0 has limit point x? = 1⊗θ?, it follows from (5.12b) that limk→∞ yk+1−
yk = − 1

γ
(I−W )x? = 0. Recalling that qk = yk−W (xk−xk−1), from (5.12a) we have

qk ∈ γ∂f(xk) ∀k. Thus, by [29, Prop. 4.2.3] we know that the sequence {qk}k≥0

is bounded. In addition, we know that limk→∞ qk+1 − qk = limk→∞(yk+1 − yk) −
W limk→∞ [(xk+1 − xk)− (xk − xk−1)] = 0. By stardard analysis for weak cluster

points, we claim that {qk}k≥0 is a convergent sequence. Let y? be its limit point.

We have y? ∈ ∂f(x?) again by [29, Prop. 4.2.3]. Further, by Conservation Property

II (cf. Lemma 5.2), we have 1Ty? = 0. Hence, all the optimality conditions (5.23)

are satisfied, meaning that (x?, y?) is a saddle point to the primal-dual problem.
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B.3 Proof of Lemma 5.5

Consider the sequence (5.42). Applying the relation recursively yields

υk ≤ ηkυ0 +
k−1∑
i=0

ηiωk−1−i.

Taking square of both sides of the above equation gives

υ2
k

(a)

≤ 2η2kυ2
0 + 2

(
k−1∑
i=0

ηiωk−1−i

)2

(b)

≤ 2η2kυ2
0 + 2

(
k−1∑
i=0

(η
i
2 )2

)(
k−1∑
i=0

(η
i
2ωk−1−i)

2

)

≤ 2η2kυ2
0 +

2

1− η

k−1∑
i=0

ηiω2
k−1−i,

(B.1)

where (a) follows from (a+ b)2 ≤ 2a2 + 2b2,∀a, b ∈ R and (b) due to the Cauchy-

Schwarz inequality. Summing the above relations over k from 1 to t and adding υ2
0

to both sides yields

Υ2
t ≤ 2

t∑
k=0

η2kυ2
0 +

2

1− η

t∑
k=1

k−1∑
i=0

ηiω2
k−1−i

=
2

1− η2
υ2

0 +
2

1− η

t−1∑
i=0

t−1−i∑
k=0

ηkω2
i

≤ 2

1− η2
υ2

0 +
2

1− η

(
t−1∑
k=0

ηk

)(
t∑
i=0

ω2
i

)
≤ 2

1− η2
υ2

0 +
2

(1− η)2
Ω2
t .

(B.2)

Taking the square roots of both sides and using the relation
√
a2 + b2 ≤ a+b,∀a, b ∈

R, we obtain

Υt ≤
√

2

1− η2
υ0 +

√
2

1− η
Ωt.

Changing t to k and letting p =
√

2
1−η and q =

√
2

1−η2υ0 completes the proof.
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B.4 Proof of Lemma 5.7

Consider the dynamic average consensus step (5.38). Subtracting (5.44) from

(5.39b) and letting J = W − 11T

m
, we have

‖ỹk+1‖ = ‖Jỹk + J∆gk‖ ≤ η ‖ỹk‖+ η ‖∆gk‖ . (B.3)

Then, by Assumption 5.7 and Remark 5.11 we have

‖ỹk+1‖ ≤ η(‖ỹk‖+ ‖∆gk‖)

≤ η(‖ỹk‖+ L ‖xk+1 − xk‖)

= η(‖ỹk‖+ L ‖x̃k+1 + x̄k+1 − x̄k − x̃k‖)

≤ η ‖ỹk‖+ ηL (‖x̃k+1‖+ ‖γ � yk‖+ ‖x̃k‖) ,

(B.4)

where we have employed the relation (5.43) to substitute the third term of the last

inequality. Now, let us consider the local update step (5.37). Similar with the

above analysis for y-update, using (5.43) and (5.39a) we obtain for all k ≥ 0

‖x̃k+1‖ = ‖xk+1 − x̄k+1‖

= ‖J(xk − x̄k)− J(γ � yk)‖

= ‖J(xk − x̄k)− J(γ � yk − γ̄ � ȳk)‖

= ‖J(xk − x̄k)− J(γ � ỹk + γ̃ � ȳk)‖

≤ η ‖x̃k‖+ η ‖γ � ỹk‖+ η/
√
m ‖γ̃‖ ‖ȳk‖

≤ η ‖x̃k‖+ ηγmax ‖ỹk‖+ η ‖γ̃‖ / ‖γ̄‖ ‖γ̄ � ȳk‖

≤ η ‖x̃k‖+ ηγmax(1 + ∆γ) ‖ỹk‖+ η∆γ ‖γ � yk‖ ,

(B.5)

where we have used Proposition 5.1-(ii) for the third inequality and Proposition 5.1-

(iv) as well as the definition of HoS (cf. Definition 5.7) for the last inequality.

Combining (B.4) and (B.5) yields (note that η < 1)

‖ỹk+1‖ ≤ η ‖ỹk‖+ ηL(η ‖x̃k‖+ γmax(1 + ∆γ) ‖ỹk‖

+ ∆γ ‖γ � yk‖+ ‖γ � yk‖+ ‖x̃k‖)

= η′ ‖ỹk‖+ ηL(1 + η) ‖x̃k‖+ ηL(1 + ∆γ) ‖γ � yk‖ ,

(B.6)
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where η′ = η + γmaxL(1 + ∆γ).

Then, let us first consider (B.5) and let

wk = ηγmax(1 + ∆γ) ‖ỹk‖+ η∆γ ‖γ � yk‖

and β = γmaxL. Since η < 1 by Assumption 5.5, then by Lemma 5.5 we have

Xk ≤ ρ1Yk + p1Zk + q1, (B.7)

where ρ1 =
√

2ηγmax(1+∆γ)

1−η , p1 =
√

2∆γη

1−η , q1 =
√

2‖x̃0‖√
1−η2

.

Likewise, since β < (1−η)2

(1+∆γ)(2η3+2η2−η+1)
< 1−η

1+∆γ
and thus η′ < 1, using (B.6) and

invoking Lemma 5.5 it follows that

Yk ≤ ρ2Xk + p2Zk + q2, (B.8)

where ρ2 =
√

2η(1+η)L
(1−η′) , p2 =

√
2η(1+∆γ)L

(1−η′) , q2 =
√

2‖ỹ0‖√
1−η′2

. Since β < (1−η)2

(1+∆γ)(2η3+2η2−η+1)

and thus ρ1ρ2 < 1, combining (B.7) and (B.8) completes the proof.

B.5 Proof of Lemma 6.1

The first two inequalities follow from the Minkowski inequality and Cauchy-Schwarz

inequality respectively [94]. For the third relation, using the smoothing lemma [94]

and knowing that A is independent of x we have

E
[
‖Ax‖2] = E[xTE[ATA|x]x]

= E[xTE[ATA]x]

≤ ρ(E[ATA])E[xTx],

(B.9)

where ρ(·) is the spectral radius. With the definition of the induced norm of matrix

‖A‖E = sup‖x‖E=1 ‖Ax‖E, taking the square root of both sides completes the proof.
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B.6 Proof of Lemma 6.6

Notice that WkΠ|| = Π||Wk = Π||, ∀k ≥ 0 by Assumption 6.3. Subtracting (5.43)

from (6.17a) yields for all k ≥ 0,

x̃k+1 = Akx̃k − Ak (γk � yk) , (B.10)

where Ak = (I − Π‖)Wk = Π⊥Wk.

Then, taking the total expected norm of both sides gives

‖x̃k+1‖E = ‖Akx̃k − Ak(γk � yk)‖E
(a)
= ‖Akx̃k − Ak (γk � yk − γ̄k � ȳk)‖E
(b)
= ‖Akx̃k − Ak (γk � ỹk + γ̃k � ȳk)‖E
(c)
= ‖Akx̃k‖E + ‖Ak‖E ‖(γk � ỹk + γ̃k � ȳk)‖E
(d)

≤ ‖Akx̃k‖E + ‖γk � ỹk‖E +
σ̃γ√
m
‖ȳk‖E

(e)

≤ η ‖x̃k‖E + γmax ‖ỹk‖E + ∆γ
σ̄γ√
m
‖ȳk‖E ,

(B.11)

where (a) is clear, (b) due to Prop. 5.1-(ii), (c) and (d) obtained using Lemma 6.1

and knowing that ‖Ak‖E ≤ 1, while in (e) we have used Lemma 1 to obtain the

first term (note that Ak is independent of x̃k) and the following relation

‖γk � ỹk‖E = ‖diag{γk}ỹk‖E ≤ γmax ‖ỹk‖E

as well as the fact that σ̃γ = ∆γσ̄γ (cf. Definition 5.7) for the second term and

third term respectively.

Similarly, following the same argument as in obtaining (B.10), we can deduce from

(6.17b) and (5.44) that

ỹk+1 = Akỹk + Π⊥∆gk. (B.12)
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Taking the total expected norm of both sides yields

‖ỹk+1‖E ≤ ‖Akỹk‖E + ‖Π⊥∆gk‖E
(a)

≤ η ‖ỹk‖E + L ‖Π⊥‖E ‖xk+1 − xk‖E
(b)

≤ η ‖ỹk‖E + L ‖x̃k+1 − γk � yk − x̃k‖E
≤ η ‖ỹk‖E + L (‖x̃k+1‖E + ‖γk � yk‖E + ‖x̃k‖E)

(c)

≤ η ‖ỹk‖E + L

(
‖x̃k+1‖E + ∆γ

σ̄γ√
m
‖ỹk‖E +

σ̄γ√
m
‖ȳk‖E + ‖x̃k‖E

)
,

(B.13)

where (a) is obtained from Lemma 6.1 and Assumption 5.7, (b) due to (5.43) and

(c) deduced from (6.24) and σ̃γ = ∆γσ̄γ.

Combining (B.11) and (B.13) yields

‖ỹk+1‖E

≤
(
η + γmaxL+ ∆γL

σ̄γ√
m

)
‖ỹk‖E + (1 + η)L ‖x̃k‖E + (1 + ∆γ)L

σ̄γ√
m
‖ȳk‖E

≤ η′ ‖ỹk‖E + (1 + η)L ‖x̃k‖E + (1 + ∆γ)L
σ̄γ√
m
‖ȳk‖E ,

(B.14)

where η′ = η+ (1 + ∆γ)β and we have used the fact that σ̄γ√
m
≤ γmax to obtain the

last inequality.

Consider the relation (B.11). Let

wk = γmax ‖ỹk‖E + ∆γ
σ̄γ√
m
‖ȳk‖E .

Then, by Lemma 5.5 we have

Xe
k ≤ ρ1Y

e
k + p1Z

e
k + q1, (B.15)

where ρ1 =
√

2γmax

1−η , p1 =
√

2∆γ σ̄γ
(1−η)

√
m

, q1 =
√

2‖x̃0‖E√
1−η2

. Likewise, let w′k = (1+η)L ‖x̃k‖E+

(1 + ∆γ)L
σ̄γ√
m
‖ȳk‖E. Noticing that η′ < 1 since β < (1−η)2

3+η+∆γ(1−η)
< 1−η

1+∆γ
, it thus

follows from (B.14) and Lemma 5.5 that

Y e
k ≤ ρ2X

e
k + p2Z

e
k + q2, (B.16)

where ρ2 =
√

2(1+η)L
1−η′ , p2 =

√
2(1+∆γ)Lσ̄γ
(1−η′)

√
m

, q2 =
√

2‖ỹ0‖E√
1−η′2

. Since β < (1−η)2

3+η+∆γ(1−η)
and

thus ρ1ρ2 < 1. Then, combining (B.15) and (B.16) completes the proof.



Appendix B. Proofs for Part II 121

B.7 Proof of Proposition 5.1

(i) It is clear by noting that Π2
‖ = Π‖, where Π‖ = 11T

m
;

(ii) x� y − x̄� ȳ = x� y − x� ȳ + x� ȳ − x̄� ȳ = x� ỹ + x̃� ȳ;

(iii) Recall that x = x̄+x̃ and y = ȳ+ỹ. Then, we have x� y = (x̄+ x̃)� (ȳ + ỹ) =

x̄� ȳ+ x̄� ỹ+ x̃� ȳ+ x̃� ỹ = x̄� ȳ+ x̃� ỹ, where the last equality follows

from the facts that Π‖x̃ = Π‖ỹ = 0.

(iv) Consider the right-hand side. ‖x� y‖ =
∥∥∥ 〈x,y〉m

� 1
∥∥∥ = 1√

m
‖〈x, y〉‖ ≤ 1√

m
‖x‖ ‖y‖.

For the left-hand side, using (iii) we have ‖x� y‖ =
∥∥x̄� ȳ + x̃� ỹ

∥∥ ≥
‖x̄� ȳ‖ −

∥∥x̃� ỹ∥∥ ≥ 1√
m

(‖x̄‖ ‖ȳ‖ − ‖x̃‖ ‖ỹ‖);

(v) It is clear from the definition of projection matrix and Cauchy-Schwarz In-

equality.

B.8 Proof of Proposition 5.3

Since 1Ty = 0 and null(I − W ) = span{1}, together with (5.23a) we have

ψ(x?, y) = f(x?) − yTx? + 1
2γ
‖x?‖2

I−W = f(x?) = ψ(x?, y?). Thus, the left-

hand side of condition (5.1) is proved. Then, from (5.23a) and (5.23c), we have

0 ∈ ∂f(x?) + 1
γ
(I − W )x? − y? = ∂ψx(x

?, y?), which implies that x? minimizes

ψ(x, y?). Thus, we prove the right-hand side of condition (5.1). Conversely, as-

sume that (x?, y?) is a saddle point such that the condition (5.1) holds. Then, from

the left-hand side of condition (5.1) we have

sup
1T y=0

ψ(x?, y) = sup
1T y=0

f(x?)− yTx? +
1

2γ
‖x?‖2

I−W

= ψ(x?, y?) <∞,

which is only possible when x? ∈ span{1}. Thus we have x? ∈ null{I −W} or

namely (I −W )x? = 0. In addtion, from the righthand side of condition (5.1), we

know that x? minimizes ψ(x, y?), implying that 0 ∈ ∂f(x?) + 1
γ
(I −W )x? − y?.

Since we have shown that (I−W )x? = 0, we have 0 ∈ ∂f(x?)−y?, i.e., y? ∈ ∂f(x?).

Since y? ∈ span⊥{1} and thus 1Ty? = 0, all the optimality conditions (5.23) hold.
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Moreover, since the above analysis shows that every saddle point satisfies the opti-

mality conditions (5.23), it follows from [54, Th. 19.1] that x? is a primal solution

to the OCP problem and y? is a dual solution to the OEP problem respectively.

B.9 Proof of Proposition 5.4

From the definition of Lagrangian (5.13), recalling that qk = γyk −W (xk − xk−1)

and f ? = ψ(x?, y?) we have

γ (ψ(xk, yk)− f ?)

= γf(xk)− γyTk xk +
1

2
‖x̃k‖2

I−W − γf(x?)

= − [γf(x?)− γf(xk)− 〈qk, x? − xk〉]− 〈W (xk − xk−1), xk − x?〉+
1

2
‖x̃k‖2

I−W

= −Dqk
γf (x

?, xk) + 〈W (xk − xk−1), xk − x?〉+
1

2
‖x̃k‖2

I−W

≤ 〈W (xk − xk−1), xk − x?〉+
1

2
‖x̃k‖2

I−W

≤ ‖xk − xk−1‖W ‖xk − x
?‖W +

1

2
‖x̃k‖2

I−W ,

(B.17)

where we have used the non-negativity of Bregman distance to obtain the second

last inequality. Dividing by γ both sides of the above relation yields the claim.
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