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This Talk
• The materials are based on (Chang et al., 2020):

T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, S. Lu, “Distributed learning in the

nonconvex world: From batch data to streaming and beyond”, IEEE SPM, May, 2020.
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Motivation

We are living in a highly
connected world ...

• By 2030, there can be ≥ 125

billion connected smart devices.

• Huge amount of data generated

in real time and also locally.

How do we generate ‘intelligence’

(e.g., training a machine learning

model) from these data efficiently?
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Distributed Learning

• A promising solution is to use distributed learning to enable scalable

and real-time intelligence.

• Devices work together to solve a common problem —

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

communication
Batch Data …

Streaming Data

Dynamical Data

Data

Data

Data

problem

Data
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Distributed Learning: Key Aspects

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

communication
Batch Data …

Streaming Data

Dynamical Data

Data Input

Data Input

Data Input

Data Input

• Problem class — what type of optimization problem are we solving?

• Data acquisition — how do we acquire data?

• Communication — how devices should communicate to each other?

• Computation — what algorithms can we use under the above premises?
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Distributed Learning: Key Aspects

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

communication
Batch Data …

Streaming Data

Dynamical Data

Data Input

Data Input

Data Input

Data Input

• For machine learning (ML), it is common to use non-convex cost

functions (e.g., neural networks).

• Data can be acquired in a batch, streaming, or dynamical manner.

• To achieve real time processing, communication and computation in

the implementation have to be efficient.
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Goal of This Talk

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

communication
Batch Data …

Streaming Data

Dynamical Data

Data

Data

Data

problem

Data

• Tutorial-style review on state-of-the-art distributed learning

algorithms in handling non-convex optimization problems1.

• Focus on the data oracle affecting the algorithm design.

• Introducing future research directions.

1To simplify the presentation, most technical details will be skipped.
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Roadmap

1. Background & Mathematical Preliminary

2. Non-convex Distributed Learning: Algorithms and Theory

Batch Data

Streaming Data

3. Extensions

Dynamic Data

Other Extensions

4. Wrapping up & Open Problems
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Background & Mathematical

Preliminary



Setup and Notations
• Multi-agent (device) system on a graph G = (V ,E ).
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Local function (e.g., loss w.r.t. local data)

• Consider n agents and a possibly non-convex optimization problem:

min
Θ=(θ1;...;θn)∈Rn×d

F (Θ) :=
1

n

n∑
i=1

fi (θi ) s.t. θi = θj , ∀ (i , j) ∈ E . (P)

• fi : Rd → R is a function known only to the ith agent.
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Problem Class

• Throughout this talk, we limit ourselves to problems satisfying:

H1 For i = 1, ..., n, the cost function fi is L-smooth, i.e.,

‖∇fi (θ)−∇fi (θ′)‖ ≤ L‖θ − θ′‖, ∀ θ,θ′ ∈ Rd ,

and the averaged function F is lower bounded over Rd .

• It is a mild assumption for common cost functions, e.g., logistic loss

with neural network.

• Remark: by H1, we excluded constrained non-convex learning.

H2 The graph G is undirected and connected.

• This implies θi = θj for any i , j ⇒ agents learn a common model.

8/37



Example

• Binary Classifier Training: Agent i has

{ξi,1, ..., ξi,Mi} with ξi,` = ( xi,`︸︷︷︸
feature

, yi,`︸︷︷︸
label

) ∈ Rd × {0, 1}.

• Goal: to train the weights θ of a neural net (NN),

fi (θ; ξi,`) = (1− yi,`) log(1− hθ(xi,`)) + yi,` log hθ(xi,`)

where hθ : Rd → R is the output of the NN.

• If activation function is smooth, e.g., sigmoid, H1 is satisfied and (P)

is non-convex.

• Other applications: matrix factorization, policy optimization, etc..
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Data Oracle

• During learning, data is revealed via a local oracle map of first-order

information:

DOi : Rd → Rd

• Batch Data — entire data available at anytime (easiest setting),

DOi (θ
t
i ) = ∇fi (θt

i ) with fi (θ) = M−1
i

∑Mi
`=1 fi (θ; ξi,`)

• Streaming Data — data revealed in an online fashion,

DOi (θ
t
i ) = ∇fi (θt

i ; ξti ), ξti
i.i.d.∼ πi (·) with fi (θ) = Eξ∼πi (·)fi (θ; ξ)

• In addition, dynamic data is drawn from distribution depending on θt
i .
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Prior Works

Many algorithms have been proposed for convex optimization:

• Distributed gradient (DGD) method (Nedić and Ozdaglar, 2009),

• ADMM based algorithms (Boyd et al., 2011; Jakovetic et al., 2011),

• EXTRA (Shi et al., 2015) and its time varying graph extension DIG-ing

(Nedic et al., 2017),

• Gradient Tracking techniques (Qu and Li, 2017) and extension to

directed graphs (Xi and Khan, 2017; Pu et al., 2020),

• Optimal algorithms (Scaman et al., 2017; Uribe et al., 2020),

• and many others ...
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Do they work on (P) in general?

Consider a non-convex problem for 2 agents, satisfying H1-H2:

min
Θ=(θ1,θ2)∈R2

θ2
1

2
+

(
−θ

2
2

2

)
≡ f1(θ1) + f2(θ2) s.t. θ1 = θ2.

The DGD algorithm (Nedić and Ozdaglar, 2009) yields the recursion

θt+1 =

(
1
2

1
2

1
2

1
2

)
θt − γ

(
θt1
−θt2

)
=

(
1
2 − γ

1
2

1
2

1
2 + γ

)
θt

For any γ > 0, DGD diverges as |θt1 − θt2| → ∞!

Take-away point: caution needed when tackling non-convex
problems.
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Non-convex Distributed

Learning: Algorithms and Theory



What is a ‘Good’ Solution to (P)?

• Even with H1, H2, solving (P) to global optimum can be NP-hard.

• We resort to finding stationary and consensual solution with small

gradient and variables are in consensus:

Def. Let ε > 0, Θ = (θ1; ...;θn) is an ε-stationary solution if

Gap(Θ) = ‖n−1
∑n

j=1∇fj(θ̄)‖2 +
∑n

j=1 ‖θj − θ̄‖2 ≤ ε,

where θ̄ := n−1
∑n

j=1 θj in the averaged solution.

Goal: find an ε-stationary solution Θ satisfying Gap(Θ) ≤ ε
using a distributed learning algorithm2.

2Stronger notions of stationarity, e.g., second order stationary point, can be

considered ⇐ skipped in the interest of time; see (Vlaski and Sayed, 2021;

Daneshmand et al., 2020).
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Distributed Processing on Networks

• Let W ∈ Rn×n be a mixing matrix satisfying

Wij =

{
∈ (0, 1], if (i , j) ∈ E

0, otherwise.
and

(i) null{I −W } = span{1},
(ii) −I �W � I

• Note x ′i =
∑n

j=1 Wijxj performs local averaging. As W∞ = 11>/n, it

attains consensus asymptotically (Tsitsiklis, 1984). For example,

1

2

34

5

W =


1
4

1
4 0 1

4
1
4

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

1
4 0 1

4
1
4

1
4

1
4 0 0 1

4
1
2


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Batch Data: Basic Algorithm

• Goal: want a consensual + stationary solution, i.e., Gap(Θ) ≤ ε.
• Batch data: can access to ∇fi (θ) for any θ ∈ Rd .

• Distributed gradient (DGD) algorithm (Nedić and Ozdaglar, 2009) — let

θ0
i ∈ Rd be an initial solution at agent i , it follows

θt+1
i =

n∑
j=1

Wijθ
t
j︸ ︷︷ ︸

consensus

− γt︸︷︷︸
step size

∇fi (θt
i )︸ ︷︷ ︸

local gradient

(
⇔ in matrix notation,

Θt+1 = WΘt − γt∇f (Θt)

)

• Each iteration uses only the local gradient ∇fi (θt
i ).

Fact (Zeng and Yin, 2018, Theorem 2) – Suppose that γt = c/t for

some c > 0 and the gradients are bounded, then Gap(Θt)→ 0.

— assumptions violated by counterexample; see (Bianchi et al., 2013).

15/37



Batch Data: Primal-dual Algorithm
• Consider the consensus constraint in (P): let A ∈ R|E |×n,

θi = θj , ∀ (i , j) ∈ E ⇔ AΘ = 0 s.t. Ae,i =


1, if i ∈ e, i < j

−1, if i ∈ e, i > j

0, otherwise

with e ≡ (i , j) ∈ E and A is the graph incidence matrix.

1

2

34

5

A =



1 −1 0 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


Note that A>A = LG , i.e., the graph Laplacian matrix.
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Batch Data: Primal-dual Algo. (cont’d)

• The augmented Lagrangian function of (P): let µ ∈ R|E |×d , c > 0,

L(Θ,µ) =
1

n

n∑
i=1

fi (θi ) + 〈µ,AΘ〉+
c

2
‖AΘ‖2

F,

• We can apply a linearized primal-dual algorithm —

Θt+1 ← argmin
Θ∈Rn

{〈
∇f (Θt) + A>µt + cA>AΘt︸ ︷︷ ︸

linearizing L at (Θt ,µt)

,Θ
〉

+
1

2
‖Θ−Θt‖2

D̃

}
,

µt+1 ← µt + c AΘt+1︸ ︷︷ ︸
linearizing L at (Θt+1,µt)

• Looks complicated? we may set D̃ = Υ + 2cD � 0, where Υ is a

diagonal matrix...
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Batch Data: Primal-dual Algo. (cont’d)
• After some manipulation, we can derive the Prox-GPDA algorithm:

Θt+1 =
(
In − βA>A

)︸ ︷︷ ︸
=W if β is small enough

(2Θt −Θt−1)−α {∇f (Θt)−∇f (Θt−1)}.

• Need to keep the previous iterates and requires extra communication

round but is still decentralized.

• Example: Gradient Tracking (GT) (Qu and Li, 2017):

Θt+1 = ŴΘt − αg t , g t+1 = Ŵ g t +∇f (Θt+1)−∇f (Θt)

⇔ Θt+1 = 2ŴΘt − Ŵ 2Θt−1 − α
(
∇f (Θt)−∇f (Θt−1)

)
• Example: EXTRA (Shi et al., 2015):

Θt+1 = (In + W̃ )Θt − 1

2
(In + W̃ )Θt−1 − α[∇f (Θt)−∇f (Θt−1)]

• Also includes DGD (Nedić and Ozdaglar, 2009) when µ = 0 ...
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Batch Data: Primal-dual Algo. (cont’d)

• After some manipulation, we can derive the Prox-GPDA algorithm:

Θt+1 =
(
In − βA>A

)︸ ︷︷ ︸
=W if β is small enough

(2Θt −Θt−1)−α {∇f (Θt)−∇f (Θt−1)}.

• Analyzing Prox-GPDA allows us to analyze EXTRA (Shi et al., 2015),

GT (Qu and Li, 2017) in a unified fashion:

Fact (Hong et al., 2017, Theorem 1) – For sufficiently small α, we have

Gap(Θ(t)) = O(1/t) for Prox-GPDA.

Remark: does not require bounded gradient ⇒ Prox-GPDA/EXTRA/GT

algorithms converge in the counter example; also see (Di Lorenzo and

Scutari, 2016; Scutari and Sun, 2019).
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Streaming Data

• Data may arrive in a streaming fashion.

Data Oracle

θi

𝖣𝖮i(θi)

• Local gradient ∇fi (θt
i ) is difficult to obtain, e.g., when Mi � 1,

∇fi (θi ) = (1/Mi )
∑Mi

j=1∇θfi (θi ; ξi,j) = Eξ∼πi [∇fi (θi ; ξ)]

• Example: DOi (θi ; ξ) = ∇fi (θi ; ξ) and ξ is drawn with ξ ∼ πi , i.e.,

H3. For any θi ∈ Rd , DOi (θi ) is unbiased with bounded variance:

E[DOi (θi ; ξ)] = ∇fi (θi ), Eξ∼πi [‖DOi (θi ; ξ)−∇fi (θi )‖2] ≤ σ.
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Streaming Data: Basic Algorithm

• Decentralized Stochastic Gradient Descent (DSGD) (≈ DGD):

θt+1
i =

n∑
j=1

Wijθ
t
j − γt DOi (θ

t
i ; ξti )︸ ︷︷ ︸

replace ∇fi (θ
t
i ) by stoc. grad..

• Strong assumption needed for convergence ...

H4. For any θ ∈ Rd , the local gradient is not far away from averaged

gradient:
n−1

∑n
i=1 ‖∇fi (θ)−∇F (θ)‖2 ≤ ς2.

— the local function is homogeneous.

Fact (Lian et al., 2017) – Set γt = O(
√

1/T ) and under H1–H4, we

have E[Gap(Θt̄(T ))] = O(σ/
√
nT ), where t̄(T ) ∼ U{1, ...,T}.
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Streaming Data: Inhomogeneous Fct.

• To relax H4, we can utilize gradient tracking to derive the GT-based

Non-convex SGD (GNSD) algorithm:

Θt+1 = ŴΘt − γg t , g t+1 = Ŵ g t + DO(Θt+1; ξt+1)− DO(Θt ; ξt)

⇔ Θt+1 = 2ŴΘt − Ŵ 2Θt−1 − γ
(
DO(Θt ; ξt)− DO(Θt−1; ξt−1)

)
• Insight: gradient tracking (GT) removes inhomogeneity across fcts.

• GNSD converges with the same rate as DSGD, but with weaker

assumption, i.e.,

Fact (Lu et al., 2019) – Set γ = O(
√

1/T ) and under H1–H3, we have

E[Gap(Θt̄(T ))] = O(σ/
√
nT ), where t̄(T ) ∼ U{1, ...,T}.
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Streaming Data: Observations

• The algorithms are similar to batch data algorithms but require

different step size rule for convergence.

• We need γ = O(
√

1/T )3 to combat the non-vanishing noise variance

due to H3 in the DO — unlike the case of batch data.

• Convergence is based on a random stopping criteria, in fact,

E[Gap(Θt̄(T ))] =
1

T

T∑
t=1

E[Gap(Θt)] with t̄(T ) ∼ U{1, ...,T}.

A common criteria in non-convex stochastic optimization, where t̄(T )

is treated as a random stopping iteration.

3Alternatively, a diminishing step size of order γt = Θ(1/
√
t) can be used.
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Short Summary

DGD Prox-GPDA DSGD GNSD

# Comm./Iter. 1 2 1 2

Assumptions strong weak strong weak

Gap(Θt) N/A O(1/t) O(1/
√
t) O(1/

√
t)

• Strong assumptions needed for simpler algorithms to converge.

• Primal-dual formulation unifies many existing algorithms ⇒ lead to

optimal algorithms such as xFILTER.
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Numerical Experiments

• Task: handwritten digit classification from the MNIST dataset with

4.8× 104 training samples, divided evenly across n nodes.

• Setup: classification using a 2-hidden-layer NN with (512, 128)

neurons, totaling d = 4.68× 105 parameters.

• Environment — AWS (Amazon) cluster has better communication

efficiency than the MSI (UMN) cluster.

• Nodes connected on random regular graphs.
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Numerical Experiments: Netwk. Scalability

on MSI (slower comm.) on AWS (better comm.)

• As n increases, both GNSD and DSGD achieves lower opt. gap.

• When communication overhead is large (limited by HW), increasing n

slows down the convergence.
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Numerical Experiments (cont’d)

• With heterogeneous data, DSGD

has worse solution than GNSD.

• GNSD benefits from increased

batch size m.

• As model size increases,

comm. cost > compute cost.
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Extensions



Dynamic Data: Biased DO

Data Oracle

θi

𝖣𝖮i(θi; Xi,t)Environment

Xi,t

Dynamic DO. For any θ ∈ Rd and at time/iteration t, we have:

DOi (θ;Xi,t) = Hi (θ;Xi,t) s.t. lim
t→∞

E[Hi (θ;Xi,t)] = EX∼πθ
i (·)[Hi (θ;X )]

E.g., {Xi,t}t≥1 is Markov chain w/ stationary distribution πθ
i (·).

• The t-th sample DOi (θ;Xi,t) 6= i.i.d. and is controlled by θ.

• Mean field hi (θ) = EX∼πθ
i (·)[Hi (θ;X )] may be non-gradient.

• Applications: reinforcement learning – θ = policy, ξ = current state,

strategic classification – θ = classifier, ξ = ‘optimized’ samples.

27/37



Dynamic Data: Basic Algorithm

• Similar to DGD and DSGD, we consider a general decentralized

Stochastic Approximation (DSA) scheme:

θt+1
i =

n∑
j=1

Wijθ
t
j − γt Hi (θ

t
i ;Xi,t)︸ ︷︷ ︸

replace ∇fi (θ
t
i ) by dynamic DO

• Let h(θ) = (1/n)
∑n

i=1 hi (θ). We require this mean-field to be

correlated with gradient of (P): ∃c0, d0 > 0,〈
h(θ) | ∇F (θ)

〉
≥ c0‖h(θ)‖2, d0‖h(θ)‖2 ≥ ‖∇F (θ)‖2, ∀ θ ∈ Rd .

• Example: expectation-maximization (EM) algorithm for latent data

model, policy gradient via REINFORCE (Karimi et al., 2019), etc..

• The DSA scheme finds a solution with ‖h̄(θc)‖ ≈ 0.
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Dynamic Data: Preliminary Results

• Challenges: algorithm with non-i.i.d.+non-gradient DO.

H5 For any Θ = (θ1; ...;θn), there exists σo , σh s.t.

supx∈X ‖Hi (θi ; x)− 1
n

∑n
j=1Hj(θj ; x)‖ ≤ σo{ 1

n+ 1
n‖h(θ̃c)‖+‖θi−θ̃c‖}.

supx∈X

∥∥ 1
n

∑n
i=1Hi (θ̃c ; x)− h(θ̃c)

∥∥ ≤ σh.
In addition, we assume πθ

i (·) ≡ πi (·), i.e., an uncontrolled MC.

• Local DO 6= far away from avg. ← relaxed over Lian et al. (2017).

• DOs have uniformly bounded error from the mean field.

Fact (Wai, 2020) – Set γt = O(
√

1/t) and under H1–H2, H5 with the

dynamical DO setting. For any T ≥ 1, E[Gap(Θt̄(T ))] = O(1/
√
T ),

where P(t̄(T ) = t) = γt/
∑T

j=1 γj .

29/37



Dynamic Data: Limitations

• Previous result handled non-i.i.d.+non-gradient DO, but ignored the

possibility of controlled Markov chain.

• The latter is important for multi-agent reinforcement learning; see the

model in (Wai et al., 2018).

• H5 assumes uniformly bounded error for DO which may fail if the state

space X is unbounded.

• Distributed non-convex learning with dynamic data is still an open

problem.
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Other Extensions

• Time varying graph — some network links may fail, e.g.,

... ...

at t represented by Wt at t + 1 represented by Wt+1

• Easy to extend the analysis for DGD, DSGD, DSA, e.g., (Wai, 2020),

with similar rate of convergence.

• Not so easy with Prox-GPDA, GNSD, see (Scutari and Sun, 2019;

Nedic et al., 2017).

• Extensions to directed graphs are also closely related...
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Other Extensions

• Adversarial attack — an attacker can easily misguide the whole

network during the learning algorithm,

• With the flat architecture of distributed learning, it is easy to misguide

the agents ← how to protect the algorithm against attackers?

• Possible solutions: robust averaging (Yang and Bajwa, 2019); robust

averaging + normalized gradient (Turan et al., 2021)
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Other Extensions

• Variance reduction (VR) — most results on streaming data showed

the rate of E[GAP(Θt)] = O(1/
√
t) – Can it be improved?

• Yes, improvable to E[GAP(Θt)] = O(1/t2/3) – by GT + VR:

v t
i = β∇fi (θt

i ; ξti )︸ ︷︷ ︸
=stoc. grad

+(1− β) {v t−1
i +∇fi (θt

i ; ξti )−∇fi (θt−1
i ; ξti )}︸ ︷︷ ︸

=variance reduction (Nguyen et al., 2017)

g t
i =

∑n
j=1 Wijg t−1

i + {g t
i − g t−1

i }

see (Xin et al., 2021; Pan et al., 2020).

• The rate of O(1/t2/3) is optimal (Cutkosky and Orabona, 2019).
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Other Extensions

• Compression — each iter. needs ≥ 1 comm. to send d numbers –

Huge communication cost when d � 1 (e.g., large NN)!

• Idea: compress before transmission via error compensation ⇒
CHOCO-SGD algorithm (Koloskova et al., 2019)

θ̂t+1
i,j = θ̂t

i,j +Q
(

θt
j − γtDOj(θ

t
j )− θ̂t

j,j︸ ︷︷ ︸
compressed + broadcast by agent j

)
,∀ j ∈ Ni

and update θt+1
i =

∑n
j=1 Wij θ̂

t+1
i,j .

• Each agent only broadcast a compressed message per round.

• The CHOCO-SGD algorithm mimics the DSGD algorithm, it can be

shown that E[GAP(Θt)] = O(1/
√
t).

• Remark: also work for constrained optimization (Wai et al., 2017a).

34/37



Wrapping up & Open Problems



Take Home Points

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

computationdata oracle

communication
Batch Data …

Streaming Data

Dynamical Data

Data

Data

Data

problem

Data

• Strategies for distributed learning depend on problem class, data

model, computation and communication.

• Trade-off between simple algo. and weak assumption for convergence

← primal-dual formulation leads to many interesting designs.

• Recent results: stronger convergence guarantees & general data model.
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Open Problems

• General convergence analysis for fully dynamic data.

• Can we consider controlled Markov chain and/or unbounded

state space? see (Karimi et al., 2019), (Durmus et al., 2021).

• What benefit does it bring if we combine gradient tracking?

• Privacy-preserving decentralized learning.

• What measures shall be taken to encrypt message before

communication? also see (Wai et al., 2017b).

• Is there any tradeoff between rate of convergence and privacy?

• Communication efficient algorithms for high-dimensional learning.

• Can we design new algorithms for communication efficient

learning instead of building upon existing ones?
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Thank you!

Questions & Comments are welcomed. Online version on

https://arxiv.org/abs/2001.04786.
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