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Contents in the lecture

Introduction to deep neural network (DNN) and various training modes (Part I)

= Stochastic gradient descent and single-node training
= Parallel/distributed training

= Decentralized training

Making decentralized algorithms practical for large-scale deep training (Part II)

= Exponential graphs
= Primal-dual decentralized methods

= Periodic global averaging

Other advanced topics and BlueFog (Part Ill)

= Large-batch deep training

= An open source decentralized deep training framework: BlueFog
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Part I: Deep Neural Network (DNN) Training Algorithms
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Part I: Deep Neural Network (DNN) Training Algorithms

= Sec.l: Deep Neural Network Model
= Sec.2: Stochastic Gradient Descent and Single-Node Training
= Sec.3: Parallel/Distributed Training

= Sec.4: Decentralized Training
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Deep Neural Network

= DNN is widely used in almost all Al applications

= A typical DNN model includes a feature extractor and a classifier

= Well-trained DNN can make precise predictions

Trainable
Feature Extractor

Trainable
Classifier

Deep Neural Network (DNN)
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A practical DNN example!

Convolution Neural Network (CNN)
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DNN model

= We model DNN as h(z;€) : R — R®
= 1z € R? is the DNN model parameter to be trained
= ¢ is the input data sample

= ¢ is the number of classes

= Given the model parameter x, DNN outputs prediction scores ¢; for input &;

1
397
DNN model | Cat
o 72 Dog
h(z; &) : -162  Ship
_____________ 1
& 7 = h(z;§) € R®
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DNN model: a trivial example

= Given model parameter x = [W;b], and a linear model h(xz;&) = W& + b,

= An illustration of the trivial DNN model and its output is as follows?

stretch pixels into single column

02 |-05| 01|20 56 1.1 -96.8 | catscore

15|13 |21 | 00| (231|432 |437.9 | gogscore

input image 0 |025]| 02 |-03 24 -1.2 61.95 ship score

G = h(z; &) = W&+ b

&

2Source: https://cs231n.github.io/linear-classify /
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How to train a DNN model?

= Given model parameter z, DNN h(x; &) can make precise predictions

= But how to train/achieve the model parameter x ?

= Given a dataset {&;,y;}i2, where y; is the ground-truth label for data &;

» Define L(9:,y:) = L(h(x;&),y:) as a loss function to measure the
difference/mismatch between predictions and ground-truth labels

= DNN training is to find a model parameter x such that the mismatch

(between pred and real) are minimized across the entire dataset:

x* = arg min
z€R

{1

m

m

D L&), )

i=1

}
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DNN model is notoriously difficult to train

= DNN model L(h(z;€),y) is highly non-convex, and probably non-smooth
h(z;€) = 9(- - p(Wa - p(Wri€ + b1) + b2) -+ +)
N 1 N .
L(g:y) = 5lly = 9lI” or —ylog(yi) or others

where z = {W;,b;} and 9(-) is a non-linear activation function

Input layer Hidden layers Output layer
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DNN model is notoriously difficult to train

= Cannot find global minima; trapped into local minima and saddle points

= The dimension of model parameter x = {W;,b;} (or model size) is huge
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Visual Search |
i

3 .
Image source: neowin.net
11/64



DNN model is notoriously difficult to train

= Cannot find global minima; trapped into local minima and saddle points
= The dimension of model parameter x = {W},b;} (or model size) is huge

= The size of the dataset {&;,y;}i~; is huge

DNN Trainig = Non-convexity training + Huge dimension + Huge dataset
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Part I: Deep Neural Network (DNN) Training Algorithms

= Sec.l: Deep Neural Network Model
= Sec.2: Stochastic Gradient Descent and Single-Node Training
= Sec.3: Parallel/Distributed Training

= Sec.4: Decentralized Training
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DNN model formulated as stochastic optimization

= Recall the DNN training problem

z€R4

min % Z L(h(x; &), y:)
i=1

=z is the model parameter to train; {&;, y;}i~; is the dataset
» h(x; &) is the DNN model; highly non-convex

» L(9,y) is the loss function

v Let & :={&,y:} and F(x;&;) := L(h(x;&),y:), the problem becomes

1 m
o AN Pl
min m; (23 &)

which is a finite-sum empirical risk minimization (ERM) problem.
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DNN model formulated as stochastic optimization

= When £ follows distribution D, DNN training can also be formulated as

min f(z) where f(z)=EcupF(z;8)

zcRd

which is a stochastic optimization problem.
= ERM is a good approximation to the above problem, especially for large m

= |n this lecture, we will focus on the above stochastic problem formulation.
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Stochastic gradient descent

= D is unknown; no closed-form for f(z); cannot use gradient descent

= The most popular algorithm is stochastic gradient descent (SGD)
(Robbins and Monro, 1951; Bottou, 2010)

= Main idea: sample one (or one batch of) data sample and perform SGD
2D = 2 ®) g p(p®, ¢®)

s ¢® s the data sampled at iteration k
= VF(x®;£%®) is a stochastic gradient associated with sample £*)

=+ is the learning rate
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Why does stochastic gradient descent work?

= |f stochastic gradient is unbiased, i.e.,
EennVF(@";6) = VEeun[F(a™;8)] = V(=)
the SGD recursion in expectation becomes

Ele**"] = Elo®] - yE[VF (2 )]
~ ] - 19 (),

which reduces to a deterministic gradient descent.

= In other words, SGD is equivalent to GD in expectation. This intuitively

explains why SGD works.
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Stochastic gradient descent: convergence

Assumption

(A1) The loss function F(x;&) is L-smooth in terms of x;
(A2) The stochastic gradient is unbiased, and has bounded variance o*.

Theorem

Under the above assumptions, and let v = O(1/+/T), we have

1 T—1 , o
= Y EIViE®)P =0 (ﬁ)

k=0

where T' > 1 is the number of iterations

Note that we do no assume convexity for f(z).
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Stochastic gradient descent: convergence

(k) 2 _ o
;Enw )l —0<ﬁ)

= When iteration T — oo, it holds that E||V f(z*))||* — 0
= E|Vf(z™)|> = 0 implies SGD converges to a stationary solution

= A stationary solution can be local min, local max, or saddle point*

local min local max saddle point

N
,/,,,,:.,o % 0:“:\‘\\\\‘4

No

4Image source: from Prof. Rong Ge's online post
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Stochastic gradient descent: convergence

= Generally speaking, approaching the stationary solution is the best result

we can get for SGD; no guarantee to approach the global minimum
= Empirically, SGD performs extremely well when training DNN

= Recent advanced studies show SGD can escape local maximum, saddle
point, and even “sharp” local minimum, see, e.g., (Ge et al., 2015; Sun
et al., 2015; Jin et al., 2017; Du et al., 2018, 2019; Kleinberg et al., 2018)
and references therein

= SGD can even find global minimum under certain conditions, e.g. the PL
condition (Karimi et al., 2016)

= However, we will skip these exciting results in this lecture
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Implementing SGD in DNN training

T Jakeq]
T 19heq
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Stochastic gradient can be calculated via forward-backward propagation

Stochastic gradient can be achieved automatically via Pytorch/Tensorflow

DNN training typically utilizes GPUs

Momentum-SGD/ADAM are very useful to accelerate DNN training
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Image Classification

= Cifar-10 dataset

= 50K training images

= 10K test images

= DNN model: ResNet-18
= GPU: Tesla V100

airplane ﬂ..% V...a.&!
Eﬂ

bird
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Image Classification

Cifarl0 (Batchsize 2k) Training Loss Cifarl0 (Batchsize 2k) Val Acc
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Part I: Deep Neural Network (DNN) Training Algorithms

= Sec.l: Deep Neural Network Model
= Sec.2: Stochastic Gradient Descent and Single-Node Training
= Sec.3: Parallel/Distributed Training

= Sec.4: Decentralized Training
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Parallel/Distributed training is necessary in DNN

= Scale to larger models and bigger data
= Bring down training time from days to hours

= Different types of parallel training:

= Data-parallel training: share the model; partition the data
= Model-parallel training: share the data; partition the model

= Data-parallel and model-parallel mixed training

= In this lecture, we will focus on data-parallel training
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Data-parallel and model-parallel training®

Model Parallelism
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5Image source: https://xiandong79.github.io/Intro-Distributed-Deep-Learning

Data Parallelism
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DNN training formulated as distributed optimization

= A network of n nodes (GPUs) collaborate to solve the problem:

1 n
i = — i :E S~ F 5Gi )]
min f(r) = Z;[f (%) = By, F (2 61)
= Each component f; : R — R is local and private to node 4

= Random variable &; denotes the local data that follows distribution D;

= Each local distribution D; may be different; data heterogeneity
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DNN training formulated as distributed optimization

= We consider deep training within high-performance data-center clusters

= all GPUs are connected with high-bandwidth channels
= network topology can be fully controlled

= communication is highly reliable; no occasional link failure

= Different from the mobile Al applications, or Federated Learning where

= nodes are connected with low-bandwidth channels
= network topology can not be controlled

= communication is highly fragile; occasional link failures
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Parallel stochastic gradient descent (SGD)

(k) = VF (", §<k)) (Local compt.)

(k+1) _ (k) _ 24 {k) Global
x x nE:gZ (Global comm.)

= Each node i samples data g§’“> and computes gradient VF(x(’“);fl(k))
= All nodes synchronize (i.e. global averaged) to update model z

= Global average incurs significant comm. cost; hinders training scalability
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Global average via Parameter-Server (Li et al., 2014)

Parameter Server

10041

ettt iy
= = = =
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Global average via Ring-Allreduce (Patarasuk and Yuan,
2009)

agent 2

Z2 [1f2]3]4]

Q63
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Parallel SGD convergence

Assumption

(A1) Each local loss function F(x;&;) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance o*:

ElgM] = Vfi(e®), E|g® - Vf:z®)|? < o

(A3) Each local stochastic gradient ggk) is independent of each other

The variance of the globally averaged gradient is remarkably reduced:

N

g
Zg“) V") ZEngW VHEeM)|? < =
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Parallel SGD (P-SGD) convergence

= Substituting the above inequality into the derivation, we achieve

Theorem (Parallel SGD convergence)

Under the above assumptions, and let v = O(1/+/T), we have

T—1
1 (B)y)12 — a
T;mwf(a: )|* =0 ( m)

where T' > 1 is the number of iterations, n is the number of nodes.

= We achieve single-node SGD convergence when n =1
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Parallel SGD can achieve linear speedup

= Recall the SGD convergence rate:

T-1
. . 1 SNIE o
Single-node training: — E E|Vf(z*)|* =0 ()

r k=0 VT

T—1
. 1 B)y (2 a

n-node parallel training: = E IEHVf(x( )N*=0 ()

T — vnT

= To achieve an e-accurate solution, i.e., 5;01 E|Vf(z®™)|? <e,

2

. . . o . .
Single-node training requires — iterations
€
2
. . o . .
n-node parallel training requires — iterations
ne

= |teration complexity is inversely proportional to n; P-SGD has linear speedup
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Image Classification

= ImageNet-1K dataset
= 1.3M training images
= 50K test images

= 1K classes

= DNN Model: ResNet-50
(~25.5M parameters)

= GPU: Tesla V100 clusters
= Framework: Pytorch DDP
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Parallel SGD has linear speedup in DNN training

= Wall-clock training time to achieve > 76% top-1 accuracy (black box
indicates ideal running time linear speedup)

Method
== P-SGD

Running time
IS o

N

ImageNet Training

32 64 128 256

# GPUs

0

= Cannot achieve ideal linear speedup due to comm. cost

= Global average incurs significant comm. cost; hinders training scalability
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Comm. overhead in global average

= A single communication includes bandwidth cost and latency (Ben-Nun
and Hoefler, 2019)

= The single communication cost

Bandwidth Cost Latency Total Cost
Parameter server Q(n) Q1) Q(n+1)
Ring allreduce Q1) Q(n) Q1 +mn)

= In either approach, the cost is Q2(n), proportional to network size n.

= |In deep training, the bandwidth cost is typically more severe; but latency

cannot be ignored neither

= To approach the ideal linear speedup, comm. cost must be reduced
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Approaches to saving communication cost

= Model/Gradient sparsification (Tang et al., 2019; Koloskova et al.,
2019a,b; Wangni et al., 2017; Alistarh et al., 2018; Stich et al., 2018)

» Model/Gradient quantization (Das et al., 2018; Alistarh et al., 2017;
Bernstein et al., 2018; Wen et al., 2017)

» Local SGD/lazy-communication (Chen et al., 2018; Liu et al., 2019; Chen
et al., 2020; Zinkevich et al., 2010; Zhang et al., 2016; Stich, 2019; Yu
et al., 2019a,b; Lin et al., 2018; McMahan et al., 2017; Li et al., 2019a)

= Decentralized communication (Lopes and Sayed, 2008; Nedic and
Ozdaglar, 2009; Shi et al., 2015; Yuan et al., 2016; Assran et al., 2019;
Yuan et al., 2019; Li et al., 2019b; Di Lorenzo and Scutari, 2016; Nedic
et al., 2017; Qu and Li, 2018)
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Part I: Deep Neural Network (DNN) Training Algorithms

= Sec.l: Deep Neural Network Model
= Sec.2: Stochastic Gradient Descent and Single-Node Training
= Sec.3: Parallel/Distributed Training

= Sec.4: Decentralized Training
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Decentralized SGD: topology

= Assume we connect all nodes with some topology (n=16)

= Communication is only allowed between neighbors

= No global synchronization is allowed
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Decentralized SGD: weight matrix

= The weight matrix associated with the topology is defined as

Wi {> 0 if node j is connected to i, or i = j;
ij

=0 otherwise.
= Throughout the lecture we assume the row and column sums of W to be 1

= An example:

w‘i\
/,, 10000 1
, 1 1
P . 119900 0
‘0‘ ‘2 2 2
¥ \[/ 011000
W =
[ S 001100
“\5‘\/“3) 000 11Llo
4 00001 2

Figure: A directed ring topology and its associated combination matrix W.
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Decentralized SGD (D-SGD): partial averaging

= D-SGD is based on partial-averaging within neighborhood

Partial averaging: z; « Z wi;z;. Vi € [n]
JEN;

= N is the set of neighbors of node i
= Each node only communicates with neighbors; no global sync

» Incurs Q(dmax) comm. overhead (dmax: maximum degree)
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Maximum degree

d =3
dy =4
d3 =3
dg =6

diax = max{d;} = 6
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Decentralized SGD (D-SGD): recursions

» D-SGD = local SGD update+ paritial averaging (Loizou and Richtarik,
2020; Nedic and Ozdaglar, 2009; Chen and Sayed, 2012)

x(_kJr ) _ (k) — YV F(x! (k). g(k)) (Local update)
2D = Z Wi T (k+ ) (Partial averaging)
JEN;

= Per-iteration communication: Q(dmax) < €(n) when topology is sparse

= Incurs Q(1) comm. overhead on sparse topology (ring or grid)
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Decentralized SGD is more communication efficient

Model Ring-Allreduce Partial average
ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

= ResNet-50 has 25.5M parameters; Bert has 300M parameters

= Partial average saves more communication for larger model
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However, D-SGD has slower convergence

= The efficient communication comes with a cost: slow convergence
= Partial averaging is less effective to aggregate information
= The average effectiveness can be evaluated by spectral gap:
p=IIW = 117,
= Assume W is doubly-stochastic, it holds that p € (0,1).
= Well-connected topology has p — 0, e.g. fully-connected topology

= Sparsely-connected topology has p — 1, e.g., ring has p = O(1 — %)

n
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Weight-matrix of the fully-connected topology

L |

e =D =D =D D

o =ho o~ =

—ho —ho —ho —ho —ho

e = —=ho =~

o =ho =L D o

117 = l

L
5

W =
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Decentralized SGD convergence

Recall the assumptions of P-SGD:

Assumption

(A1) Each local loss function F(x;&;) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance o*:

ElgM] = Vfi(@®), E|g® - Vfiz®)|? < o

)

(A3) Each local stochastic gradient gl(k is independent of each other

We further introduce another data-heterogeneity assumption

Assumption
(A4) The data heterogeneity is bounded, i.e.,

1 2 2 d
=Y V@) - VI@I* <b*, VoeR
=il

When D; is identical, we have V f;(z) = Vf(x) for any i and hence b*> =0
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Decentralized SGD convergence

= (Lian et al., 2017; Assran et al., 2019; Koloskova et al., 2020) show that

Theorem (Decentralized SGD convergence)

Under Assumptions (A1)-(A4), and let v = O(1/v/T), we have

=il

1 2/3 2/3 2/32/3

T§ :E||Cf(x<k))|\2 0 /70 T2p3 z 1/3 T2€, 2/3
=0 n1 / (1 p) / / (1 p) /

where T' > 1 is the number of iterations, and n is the number of nodes.

= When topology is fully connected (p = 0), D-SGD reduces to P-SGD.

= When p =0 and n =1, D-SGD reduces to single-node SGD
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Convergence rate: P-SGD v.s. D-SGD

= Convergence comparison (i.i.d data distribution, i.e., b* = 0):

T
i 1 —()\[12 — a
P-SGD : T;EHVf(m 1l _O<\/ﬁ)

O( o . p2/302/3 )
VT~ T30 —p)t/?
—_————

extra overhead

T
4 —(k)\[12 —
D-SGD : ?;Eva )2 =

where o2 is the gradient noise, and T is the number of iterations.

= D-SGD can asymptotically converge as fast as P-SGD when T" — oo; the
first term dominates; reach linear speedup asymptotically

= But it requires more iteration (i.e., T' has to be large enough) to reach
that stage due to the extra overhead caused by partial averaging
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Transient iterations

= Definition (Pu et al., 2020): number of iterations before D-SGD achieves

linear speedup
= Transient iterations measure the converg. gap between P-SGD and D-SGD
= Longer tran. iters. = slower convergence than P-SGD

= The transient iteration complexity of D-SGD is

2/3 _2/3 4 3
. pio o pn
d data: — < == T=Q(——
11 ata Tz/(’(lfp)l/‘}_ ,—nT ((1_p)2)
2/312/3 43
. p='°b o pn
non-iid data : < = T=Q(——
T = PR = T =

= Sparse topology (p — 1) incurs large tran. iters. complexity
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Transient iterations: illustration

[llustration of the tran. iters. on D-SGD over ring (logistic regression)

10!
—— Decentralized SGD
—— Parallel SGD
5 10°
=
w
L
107!
g
c
©
U
=102
. X M —|
<+«———Transient Iterations——»
1073
0 2000 4000 6000 8000

Iterations

If the transient stage is too long, we may not be able to achieve linear speedup

given the limited time/resource budget
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Part | summary

= DNN training can be formulated as stochastic optimization
= SGD is the leading approach to train DNN

= Parallel SGD can achieve linear speedup theoretically; but the comm. cost

incurred by global average hinders its empirical linear speedup performance

= Decentralized SGD utilizes partial averaging within neighborhood; reduce

per-iter comm. cost from ©(n) to Q(dmax), and even (1).

= D-SGD suffers from slower convergence; compensate its comm. efficiency.
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In Part Il, we will

Introduce several techniques to accelerate D-SGD and make it practically
valuable for large-scale deep learning
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