The Stochastic Gradient Method and Variance Reduction

Presented on August 4, 2021

Outline

The Stochastic Gradient Descent Algorithm

Variance Reduction Methods

Recap - The Gradient Descent Algorithm

• The workhorse:

$$\min_{\theta \in \mathbb{R}^d} \left\{ f^N(\theta) = \frac{1}{N} \sum_{i=1}^N \ell(h_{\theta}(x_i), y_i) \right\}$$

• GD iteration:

$$\theta^{k+1} = \theta^k - \gamma^k \cdot \nabla f^N(\theta).$$

- Computation cost per iteration: N gradient evaluations!
- It would be nice if we can compute less per iteration...

The SGD Algorithm

Empirical risk minimization

$$\min_{\theta} f^{N}(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(\theta^{k})$$

- Pick an index i^k : $\theta^{k+1} = \theta^k \gamma^k \cdot \nabla f_{i^k}(\theta^k)$
- Reduced workload per iteration
- Convergence?
- SGD vs. GD?

Convergence Analysis - Convex Function

Deterministic GD:

Theorem

Let f be convex with bounded gradient, then the sequence $(x^k)_{k\in\mathbb{N}}$ generated by GD with step size $\gamma=\frac{\|x^0-x^\star\|}{\sqrt{T+1}B}$ satisfies

$$f(\bar{\theta}^T) - f(\theta^*) \le \frac{\|x^0 - x^*\|B}{2\sqrt{T+1}},$$

where
$$\bar{\theta}^T = \sum_{k=0}^T \theta^k / (T+1)$$

Some preliminaries

Conditional expectation

- $\mathbb{E}(X|Y)$ is a random variable: "best guess" of X knowing Y
- Law of total expectation: $\mathbb{E}X = \mathbb{E}(\mathbb{E}(X|Y))$

Filtration

- $\mathcal{F}^k = \sigma(i^0, \dots, i^k)$
- If i^0 up to i^{k-1} are given, then θ^k is determined: $\theta^k \in \mathcal{F}^{k-1}$
- Perfect information: $\mathbb{E}(\theta^k|\mathcal{F}^{k-1}) = \theta^k$
- Partial information: $\mathbb{E}(\theta^k \cdot Y | \mathcal{F}^{k-1}) = \theta^k \mathbb{E}(Y | \mathcal{F}^{k-1})$

A First Proof of SGD

Let's mimic the proof in the deterministic case

$$\|\theta^{k+1} - \theta^{\star}\|^{2} = \|\theta^{k} - \gamma \nabla f_{i^{k}}(\theta^{k}) - \theta^{\star}\|^{2}$$
$$= \|\theta^{k} - \theta^{\star}\|^{2} - 2\gamma \nabla f_{i^{k}}(\theta^{k})^{\top}(\theta^{k} - \theta^{\star}) + \gamma^{2}\|\nabla f_{i^{k}}(\theta^{k})\|^{2}$$

Observation: i^k is independent of θ^k

- $\mathbb{E}[\nabla f_{i^k}(\theta^k) | \mathcal{F}^{k-1}] = \nabla f^N(\theta^k)$
- $\bullet \ \mathbb{E}[\nabla f_{i^k}(\boldsymbol{\theta}^k)^\top (\boldsymbol{\theta}^k \boldsymbol{\theta}^\star) \,|\, \mathcal{F}^{k-1}] \geq f^N(\boldsymbol{\theta}^k) f^N(\boldsymbol{\theta}^\star)$

Use law of total expectation:

$$\mathbb{E}\|\boldsymbol{\theta}^{k+1} - \boldsymbol{\theta}^{\star}\|^{2} = \mathbb{E}[\mathbb{E}\|\boldsymbol{\theta}^{k+1} - \boldsymbol{\theta}^{\star}\|^{2}|\mathcal{F}^{k-1}]$$

$$\leq \mathbb{E}\|\boldsymbol{\theta}^{k} - \boldsymbol{\theta}^{\star}\|^{2} - 2\gamma\mathbb{E}[f^{N}(\boldsymbol{\theta}^{k}) - f^{N}(\boldsymbol{\theta}^{\star})] + \gamma^{2}B^{2}$$

We get "on average" the same inequality in the deterministic case.

Stochastic GD:

Theorem

Let f^N be convex with bounded gradient, then the sequence $(x^k)_{k\in\mathbb{N}}$ generated by SGD with step size $\gamma=\frac{\|x^0-x^\star\|}{\sqrt{T+1}B}$ satisfies

$$\mathbb{E}\left[f(\bar{\theta}^T) - f(\theta^*)\right] \le \frac{\|x^0 - x^*\|B}{2\sqrt{T+1}},$$

where
$$\bar{\theta}^T = \sum_{k=0}^T \theta^k/(T+1)$$
.

Convergence Analysis - Strongly Convex Smooth Function

• Deterministic setting

Theorem

Let f be μ -strongly convex and L-smooth, then the sequence $(\theta^k)_{k\in\mathbb{N}}$ generated by GD with step size $\gamma=1/L$ satisfies

$$f(\theta^{k+1}) - f^* \le \left(1 - \frac{\mu}{L}\right) \left(f(\theta^k) - f^*\right)$$

Can we hope for the same result?

Convergence of SGD - Strongly Convex

Descent Lemma

$$f^N(\theta^{k+1}) \leq f^N(\theta^k) + \nabla f^N(\theta^k)^\top (\theta^{k+1} - \theta^k) + \frac{L}{2} \|\theta^{k+1} - \theta^k\|^2.$$

Conditioning on the past \mathcal{F}^{k-1}

$$\begin{split} & \mathbb{E}[f^{N}(\boldsymbol{\theta}^{k+1})|\mathcal{F}^{k-1}] \\ \leq & f^{N}(\boldsymbol{\theta}^{k}) - \gamma \mathbb{E}[\nabla f^{N}(\boldsymbol{\theta}^{k})^{\top} \nabla f_{ik}(\boldsymbol{\theta}^{k})|\mathcal{F}^{k-1}] + \frac{\gamma^{2}L}{2} \mathbb{E}[\|\nabla f_{ik}(\boldsymbol{\theta}^{k})\|^{2}|\mathcal{F}^{k-1}] \\ = & f^{N}(\boldsymbol{\theta}^{k}) - \gamma \cdot \|\nabla f^{N}(\boldsymbol{\theta}^{k})\|^{2} + \frac{\gamma^{2}L}{2} \mathbb{E}[\|\nabla f_{ik}(\boldsymbol{\theta}^{k})\|^{2}|\mathcal{F}^{k-1}]. \end{split}$$

Quite unfortunately...

$$\mathbb{E}[\|\nabla f_{i^k}(\theta^k)\|^2 | \mathcal{F}^{k-1}] = \frac{1}{m} \sum_{i=1}^m \|\nabla f_i(\theta^k)\|^2 \ge \|\nabla f^N(\theta^k)\|^2.$$

Convergence of SGD - Strongly Convex

Assumption: bounded variance

$$\mathbb{E}[\|\nabla f_{i^k}(\theta^k)\|^2 | \mathcal{F}^{k-1}] - \|\nabla f^N(\theta^k)\|^2 \le \sigma^2.$$

Plug in and use the gradient dominance property

$$\begin{split} \mathbb{E}[f^N(\theta^{k+1})|\mathcal{F}^{k-1}] &\leq f^N(\theta^k) - \gamma \cdot \|\nabla f^N(\theta^k)\|^2 + \frac{\gamma^2 L}{2} \left(\|\nabla f^N(\theta^k)\|^2 + \sigma^2\right) \\ &= f^N(\theta^k) - \gamma \left(1 - \frac{\gamma L}{2}\right) \cdot \|\nabla f^N(\theta^k)\|^2 + \frac{\gamma^2 L}{2} \sigma^2 \\ &\leq f^N(\theta^k) - \gamma \left(1 - \frac{\gamma L}{2}\right) \cdot 2\mu \left(f^N(\theta^k) - f^\star\right) + \frac{\gamma^2 L}{2} \sigma^2 \end{split}$$

Convergence analysis - strongly convex smooth function

Stochastic setting

Theorem

Let f be μ -strongly convex and L-smooth, then the sequence $(\theta^k)_{k \in \mathbb{N}}$ generated by SGD with step size γ satisfies

$$\mathbb{E}[f(\theta^{k+1})] - f^* \le \left(1 - 2\mu\gamma\left(1 - \frac{\gamma L}{2}\right)\right) \left(\mathbb{E}[f(\theta^k)] - f^*\right) + \frac{\gamma^2 L}{2}\sigma^2$$

- Optimization error does not go to zero!
- ullet Send γ to zero to reduce the bad term \longrightarrow kills the rate

Convergence analysis - strongly convex smooth function

Theorem

Let f^N be μ -strongly convex and L-smooth, and let γ^k be chosen such that

$$\gamma^k = \frac{\beta}{c+k} \quad \text{for some} \quad \beta > \frac{1}{\mu}, \ c > 0 \quad \text{such that } \gamma^0 \leq \frac{1}{L}$$

then the sequence $(\theta^k)_{k\in\mathbb{N}}$ generated by SGD satisfies

$$\mathbb{E}[f^{N}(\theta^{k})] - f^{\star} \le \frac{1}{c+k} \max \left\{ \frac{\beta^{2} \sigma^{2} L}{2(\beta \mu - 1)}, (c+1)(f^{N}(\theta^{0}) - f^{\star}) \right\}$$

- Constant γ : linear rate to $\mathcal{N}(\theta^*)$
- Diminishing γ^k : sublinear rate to θ^*

We want "GD convergence rate" + "SGD workload per iteration"

Outline

The Stochastic Gradient Descent Algorithm

Variance Reduction Methods

What is "wrong" with SGD

The key inequality

$$\mathbb{E}[f^N(\theta^{k+1})|\mathcal{F}^{k-1}] \le f^N(\theta^k) - \gamma \left(1 - \frac{\gamma L}{2}\right) \cdot 2\mu \left(f^N(\theta^k) - f^\star\right) + \frac{\gamma^2 L}{2}\sigma^2$$

Decrease γ to kill the last term: sublinear rate

Constant learning rate γ

SGD iteration: $\theta^{k+1} = \theta^k - \gamma \cdot \nabla f_{i^k}(\theta^k)$

Sanity check: assume $\theta^k \to \theta^*$ (not granted), then $\gamma \cdot \nabla f_{i^k}(\theta^k) \to 0$

 θ^* cannot be stationary: $\nabla f_i(\theta^*) \neq 0$ for any i.

Solution: correct the gradient to kill $\sigma \Longrightarrow VR$ methods

Basic idea: replace $\nabla f_{i^k}(\theta^k)$ by g^k such that $g^k \to \nabla f^N(\theta^k)$

Stochastic average gradient

Let us rewrite the gradient as

$$\nabla f^N(\theta^k) = \frac{1}{N} \sum_{i=1}^N f_i(\theta^k) = \frac{1}{N} \Big(\nabla f_{i^k}(\theta^k) + \underbrace{\sum_{j \neq i^k} \nabla f_j(\theta^k)}_{\text{not available}} \Big)$$

Replace $\nabla f_j(\theta^k)$ by its latest evaluation $\nabla f_j(\theta^{k-d_j})$.

Implementation:

- Maintain a gradient table v_i storing the latest evaluation of $\nabla f_i(\theta)$
- At iteration k, update table

$$v_i^k = \begin{cases} \nabla f_i(\theta^k), & \text{if } i = i^k \\ v_i^{k-1}, & \text{otherwise.} \end{cases}$$

Summation can be done cheaply by recycling previous computations

SAG - Convergence Rate

Theorem

Let f^N be μ -strongly convex and each f_i L_{\max} -smooth, then the sequence $(\theta^k)_{k\in\mathbb{N}}$ generated by SGD with step size $\gamma=1/(16L_{\max})$ satisfies

$$\mathbb{E}\left[f^{N}(\theta^{k})\right] - f^{\star} \leq \left(1 - \min\left\{\frac{\mu}{L_{\max}}, \frac{1}{8m}\right\}\right)^{k} \times \left(\frac{3}{2}(f^{N}(\theta^{0}) - f^{\star}) + \frac{4L_{\max}}{m}\|\theta^{0} - \theta^{\star}\|^{2}\right)$$

- Linear rate $O((m + L_{\max}/\mu) \log 1/\varepsilon)$
- Compare to full gradient in terms of gradient evaluations $O\left(m\cdot (L/\mu)\log 1/\varepsilon\right)$
- Which is better? $(L_{\max} \leq mL)$ [prove it]
- Proof is hard the gradient surrogate $g^k = \frac{1}{N} \sum_{i=1}^N v_i^k$ is biased.

Control Variates

Basic idea: Suppose we want to estimate $\mu = \mathbb{E}X$, and we have some random variable $Y \approx X$ with known mean $\zeta = \mathbb{E}Y$.

Given
$$(X_i, Y_i)$$
, let $\widetilde{X}_i = X_i - Y_i + \zeta$, then

Unbiased
$$\mathbb{E}(\widetilde{X}_i) = \mathbb{E}X_i = \mu$$

Reduced variance
$$V(\widetilde{X}_i) \leq \mathbb{E}||X_i - Y_i||^2 \approx 0.$$

Apply this idea to the gradient estimator

$$\nabla f^{N}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\nabla f_{i}(\theta) - v_{i} + v_{i}) = \frac{1}{m} \sum_{i=1}^{m} (\nabla f_{i}(\theta) - v_{i} + \bar{v})$$

Let
$$g^k = \underbrace{\nabla f_{ik}(\theta^k)}_{X_i} - \underbrace{(v^k_{ik} - \bar{v}^k)}_{Y_i}.$$

- q^k is unbiased
- choose v_i such that $v_i^k \to \nabla f_i(\theta^k)$ for variance reduction

SAGA

- Maintain a gradient table v_i storing the latest evaluation of $\nabla f_i(\theta)$
- At iteration k, update table

$$v_i^k = \begin{cases} \nabla f_i(\theta^k), & \text{if } i = i^k \\ v_i^{k-1}, & \text{otherwise.} \end{cases}$$

• SAGA gradient estimator

$$g^{k} = \nabla f_{ik}(\theta^{k}) - v_{ik}^{k} + \frac{1}{m} \sum_{i=1}^{m} v_{i}^{k}$$

Recall SAG gradient estimator takes form

$$g^{k} = \frac{1}{m} \nabla f_{ik}(\theta^{k}) - \frac{1}{m} v_{ik}^{k} + \frac{1}{m} \sum_{i=1}^{m} v_{i}^{k}$$

SAGA is very similar to SAG

- $\gamma = O(1/L_{\text{max}})$, linear rate $O((m + L_{\text{max}}/\mu) \log 1/\varepsilon)$
- $ullet \ g^k$ is unbiased simplifies the proof

SVRG

Drawback of SAG and SAGA: table maintainance cost O(md)

How to reduce memory requirement without sacrificing the rate?

The idea of SVRG: align the reference points of the v_i 's.

Every t iterations, do

- store $\bar{\theta} = \theta^k$
- compute full gradient $\bar{v} = \nabla f^N(\theta^k)$

SVRG gradient estimator

$$g^{k} = \nabla f_{i^{k}}(\theta^{k}) - \nabla f_{i^{k}}(\bar{\theta}) + \bar{v}$$

Convergence: If $t \sim U\{1,\ldots,m\}$, γ depends on μ,L_{\max},t , linear rate $O\left((m+L_{\max}/\mu)\log 1/\varepsilon\right)$

- Memory requirement O(d)
- Full gradient computation once in a while