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Outline

The Stochastic Gradient Descent Algorithm
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Recap - The Gradient Descent Algorithm

The workhorse:

N
. Ny 1 N
91161]1151 {f 0) = N;ahe(%),yz)}
GD iteration:
gk+1 _ gk _ ,Yk ] va(e).

Computation cost per iteration: N gradient evaluations!

It would be nice if we can compute less per iteration...
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The SGD Algorithm

Empirical risk minimization

N 1Y k
min f7(0) = ﬁ;fiw )

Pick an index i*: 98T = g% — 4k . w1, (6%)

Reduced workload per iteration

e Convergence?
SGD vs. GD?
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Convergence Analysis - Convex Function

Deterministic GD:

Theorem

Let f be convex with bounded gradient, then the sequence (z*)icn

generated by GD with step size v = Hj;_%;” satisfies
0 *
— B
) s < 1 =1

where 7 = Y"1 _, 6% /(T + 1)
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Some preliminaries

Conditional expectation

® E(X|Y) is a random variable: “best guess” of X knowing Y
® Law of total expectation: EX = E(E(X]Y))

Filtration

o FF=0(,...,i

If §© up to i#=1 are given, then 0% is determined: 0F ¢ FF-1
Perfect information: E(6%|F*~1) = ¢*

Partial information: E(6* - Y|FF~1) = *E(Y|FF 1)
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A First Proof of SGD

Let's mimic the proof in the deterministic case
194 = 0%11% = 16" — 7V £ (6%) — 07
= 116" — 0" = 29V £ (6%) " (6" — 0") + IV £ ("))

k

Observation: i* is independent of 6"

* B[V /(") | FF1 =V N o)
B[V fu(0%)T (6 —6%) | F*1 > fN(©o%) - 1N (6%)
Use law of total expectation:
B0 — 0%|* = E[E|0" — %)% 7]
<EJ|6* - 0*|* — 29[V (%) — fN (07)] + 47 B

We get “on average” the same inequality in the deterministic case.
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Stochastic GD:

Theorem

Let fN be convex with bounded gradient, then the sequence (z*);cn

= L=z

= s satisfies

generated by SGD with step size ~

e =B

aT *
E[f07) ~ 107 < Vo2

where 7 = fzo 0% /(T + 1).
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Convergence Analysis - Strongly Convex Smooth

Function

e Deterministic setting
Theorem

Let f be u-strongly convex and L-smooth, then the sequence (6%)ycn
generated by GD with step size v = 1/L satisfies

1O - < (1-2) (6% - 1)

Can we hope for the same result?
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Convergence of SGD - Strongly Convex
Descent Lemma
YO < )+ N T O - 08+ S0 - b,
Conditioning on the past F¢~1
B[N (") FF
<N OF) B[V N (0%) TV i (e">|f’“ 11+ LBV £ (0912174

=N @) — - VY 002 + LEE(V (9’“>|| lFE.
Quite unfortunately...

B[V £ (09) P17 = S IV A6 12 > 1V~ (652
i=1
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Convergence of SGD - Strongly Convex

Assumption: bounded variance
E[|V £ 0911 = V7Y (097 < o™,
Plug in and use the gradient dominance property
BN O < N0 =y 19N e8P+ T (IIVf (0")]° +07)
. L ’L
=@ - (1-3) v (a’wn + 2Ly

2
<N - (1= ) 2 (6 - ) + e
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Convergence analysis - strongly convex smooth function

e Stochastic setting

Theorem
Let f be p-strongly convex and L-smooth, then the sequence (0%);cn
generated by SGD with step size ~y satisfies

2
B0 - 17 < (1- 2y (1- 0 ) L6047 + Lo

¢ Optimization error does not go to zero!

® Send « to zero to reduce the bad term — kills the rate
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Convergence analysis - strongly convex smooth function

Theorem

Let fN be p-strongly convex and L-smooth, and let v* be chosen such
that

k B

1
~N° = for some B> —, ¢>0 such that~" <
c+k n

SIS

then the sequence (6%),cn generated by SGD satisfies

N gk * 1 B2o’L N (40 *
BN O] - £ < max { G2 e+ D0V - 1]

e Constant ~v: linear rate to NV (6*)
¢ Diminishing 7*: sublinear rate to 6*

We want “GD convergence rate” + “SGD workload per iteration”
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Outline

Variance Reduction Methods
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What is “wrong” with SGD

The key inequality

LAY (05T 7R < PV (08) — o (1 B ﬂ) o (fN(gk) —f*) n ﬁa

2 2

Decrease ~ to kill the last term: sublinear rate

Constant learning rate ~

SGD iteration: 9*t1 = 0% — . V.. (6%)

Sanity check: assume 6% — 0* (not granted), then ~ - V£ (6%) — 0
6™ cannot be stationary: Vf;(6*) # 0 for any .

Solution: correct the gradient to kill 0 = VR methods

Basic idea: replace Vf;.(6%) by g* such that g* — vV (6%)

2
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Stochastic average gradient

Let us rewrite the gradient as

N
VINO) = - 30RO = (Vi) + 3 VY
=t g

not available

Replace ij(ek) by its latest evaluation ij(ek*d-f).
Implementation:

® Maintain a gradient table v; storing the latest evaluation of V f;(9)
e At iteration k, update table

o JVEO5), ifi=idt
’ k=1 otherwise.

v, N

® Summation can be done cheaply by recycling previous computations
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SAG - Convergence Rate

Theorem

Let fN be pu-strongly convex and each f; Lmax-smooth, then the
sequence (%) ,cn generated by SGD with step size y = 1/(16 Lmax)
satisfies

E[NEY] -5 < (1 - min{Lr’:ax, Sin})k
x <§(fN(0°) — ) 4Lm"ueo e*HQ)

Linear rate O((m + Lmax/p)log1/¢)

e Compare to full gradient in terms of gradient evaluations

O(m - (L/p)log1/e)

Which is better? (Lmax < mL) [prove it]

Proof is hard — the gradient surrogate g* = & SN | v is biased.
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Control Variates

Basic idea: Suppose we want to estimate 4 = EX, and we have some
random variable Y ~ X with known mean ¢( = EY.

Given (X;,Y;), let X; = X; — Y; + ¢, then

Unbiased E(X;)=EX; =p
Reduced variance V(X;) <E||X; - Yi|* =~ 0.

Apply this idea to the gradient estimator
1 — 1 — 1 —
—Ezvfz( Ezl vfz — v + ;) —EZ; sz(e 1)2‘-"-1_1)
= 1= i=

Let g% = V£ (6%) — (vh — ™).
—_— ——
X; Y;

e ¢* is unbiased
e choose v; such that v¥ — Vf;(6%) for variance reduction
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SAGA

® Maintain a gradient table v; storing the latest evaluation of V f;(0)
e At iteration k, update table

p VRN, ifi=d
Vi =Y k-1 .
v, otherwise.

® SAGA gradient estimator
Vi (0") — ok £ LSk
—szk(e ) vzk+m;’01
Recall SAG gradient estimator takes form
o = V") - okt Zvl
SAGA is very similar to SAG
® v = O(1/Lmax), linear rate O((m + Lmax/p) log1/¢)

e ¢* is unbiased simplifies the proof
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SVRG
Drawback of SAG and SAGA: table maintainance cost O(md)

How to reduce memory requirement without sacrificing the rate?
The idea of SVRG: align the reference points of the v;'s.
Every t iterations, do

* store § = ¢F
e compute full gradient 5 = vV (6%)

SVRG gradient estimator
9" = Vfu(0") = VI (0) +0
Convergence: If t ~ U{1,...,m}, v depends on u, Lmax, t, linear rate

O((m + Lmax/,u) IOg 1/5)

® Memory requirement O(d)
® Full gradient computation once in a while 20-20
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