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Collaborative Statistical Machine Learning

Empirical risk minimization:

θ? ∈ argmin
θ

1

m

m∑
i=1

fi(θ;Zi)

1

2

3

4

L1,Z1

L2,Z2

L3,Z3

L4,Z4

Full Data: realizations (x, y) ∈ Z.

Agent Partition: Z = Z1 ∪ Z2 · · · ∪ Zm; Zi: data of agent i.

Model: hθ such that hθ(x) ≈ y.

Local Loss: fi(θ) = 1
|Zi|

∑
(x,y)∈Zi

`(hθ(x), y)
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Example: Decentralized Nonlinear Fitting

Data: (xi, yi)

Model:

hθ(x) = θ1 · x2 + θ2 · x+ θ3

Loss Function:

`(θ) =
1

2

(
y − hθ(x)

)2
Local Loss:

fi(θ,Zi) = 1
|Zi|

∑
(x,y)∈Zi

1
2 (y − hθ(x))2

x

y

i

(xi, yi) ∈ Zi

θ? ∈ argmin
θ

1

m

m∑
i=1

fi(θ,Zi)
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Network Model

Dynamic network topology: Agents are embedded in a time-varying
directed communication graph with general topology

i

j

k

`

Li

Lj

Lk

L`

N ini , {agents send info. to i} ∪ {i}

Assumptions on the network & agents’ knowledge

• Local information: each agent i knows its fi but not
∑
j 6=i fj

• Local communications: agent i can receive information from its
“neighbors”

• Long term connectivity: T -strongly connected digraphs
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Decentralized Gradient Descent

Empirical risk minimization:

min
θ

{
fN (θ) =

1

m

m∑
i=1

fi(θ)
}

(P)
1

2

3

4

L1

L2

L3

L4

θi: local copy of θ

Two objectives: consensus and optimality

• consensus: θk+1
i =

∑
j∈N in

i

wijθ
k
j

• perturbation:

θ
k+ 1

2
i =

∑
j∈N in

i

wijθ
k
j − γ

k · ∇fi(θki )

• dilemma: (γk ↓ 0: sublinear rate) vs. (γk ≡ γ: linear rate but Nε(θ∗)).
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Speed Accuracy Dilemma

Assume for simplicity d = 1.

Notations:

• Consensus matrix: W = {wij}
• Stacked local variables: θ = [θ1, . . . , θm]>

• Pseudo gradient: ∇F (θ) = [∇f1(θ1), . . . ,∇fm(θm)]>

DGD in matrix form: θk+1 = Wθk − γ · ∇F (θk)

needs correction

Sanity check:

• suppose θk → θ∗ (convergence) and θ∗i = θ∗j (consensus)

• ⇒ ∇fi(θ∗) = 0 for all i = 1, . . . ,m.

• cannot achieve both consensus and optimality with constant γ.
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Decentralized Gradient Tracking

Empirical risk minimization:

min
θ

{
fN (θ) =

1

m

m∑
i=1

fi(θ)
}

(P)
1

2

3

4

L1

L2

L3

L4

• correct direction:

θ
k+ 1

2
i =

∑
j∈N in

i

wijθ
k
j − γ

k · ���
�:gki → 1

m

∑m
i=1∇fi(θ

k
i )

∇fi(θki )

• gradient tracking:

gk+1
i =

∑
j∈N in

i

wij(g
k
j +∇fj(θk+1

j )−∇fj(θkj ))
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How Tracking Works?

In vector form:

gk+1 = W (gk +∇F (θk+1)−∇F (θk))

W is doubly stochastic:

• Consensus forcing W1 = 1

• Sum preserving 1>W = 1>

Taking sum:

1>gk+1 = 1>W (gk +∇F (θk+1)−∇F (θk))

= 1>(gk +∇F (θk+1)−∇F (θk))

Initialize g0 = ∇F (θ0), then 1>gk = 1>∇F (θk).

If θi’s and gi’s are consensual, then gki → ∇f
N (θki ).
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Convergence Proof

Assumption: Each ∇fi is L-smooth, ρ , σ(W − J) ≤ 1.

DGT in matrix form:

θk+1 = Wθk − γ · gk

gk+1 = W (gk +∇F (θk+1)−∇F (θk))

The average process:

θ̄k+1 = θ̄k − γ · ḡk

= θ̄k − γ · 1

m

m∑
i=1

∇fi(θki ) (tracking property)

The average process can be viewed as the inexact centralized GD on θ̄k
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GD Proof Recap

Gradient iteration:

θk+1 = θk − γ · ∇fN (θk)

Apply descent lemma

fN (θk+1) ≤ fN (θk) +∇fN (θk)>(θk+1 − θk) +
L

2
‖θk+1 − θk‖2

= fN (θk)− γ · ‖∇fN (θk)‖2︸ ︷︷ ︸
O(γ)

+
γ2L

2
‖∇fN (θk)‖2︸ ︷︷ ︸
O(γ2)

By the monotone convergence theorem: if γ < 2
L , then

• {fN (θk)} converges
• ‖∇fN (θk)‖ → 0
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Main Steps

Step 1: Descent on the average

fN (θ̄k+1) ≤ fN (θ̄k)− 1

m
γ (1− γL) ‖gk‖2 +

1

m

m∑
i=1

1

2L
‖∇fN (θ̄k)− gki ‖

2

︸ ︷︷ ︸
tracking error

.

Step 2: Bounding tracking error

‖∇fN (θ̄k)− gki ‖ ≤
1

m

m∑
j=1

L‖θ̄k − θkj ‖+ ‖ḡk − gki ‖

Step 3: Bounding consensus error

‖θ̄k+1 − θk+1‖ ≤ ρ‖θ̄k − θk‖+ γ‖ḡk − gk‖

‖ḡk+1 − gk+1‖ ≤ ρ‖ḡk − gk‖+ 2ρL‖θ̄k − θk‖+ γρL‖gk‖

Consequence: tracking error = O(γ2‖gk‖2) ⇒ descent if γ is small
enough
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Inexact Gradient Descent

Inexact gradient descent:

θ̄k+1 = θ̄k − γ · ḡk

By the descent lemma

fN (θ̄k+1) ≤ fN (θ̄k) +∇fN (θ̄k)>(θ̄k+1 − θ̄k) +
L

2
‖θ̄k+1 − θ̄k‖2

= fN (θ̄k)− γ∇fN (θ̄k)>ḡk +
γ2L

2
‖ḡk‖2

≤ fN (θ̄k)− γ · 1

m

m∑
i=1

∇fN (θ̄k)>gki +
1

m

m∑
i=1

γ2L

2
‖gki ‖

2

If ∇fN (θ̄k) were equal to gki then we are done. But it’s not that bad...

Remember we are constructing gi to track ∇fN (θ̄k)

12-20



Inexact Gradient Descent (Cont.)

Descent Lemma

fN (θ̄k+1) ≤ fN (θ̄k)− γ · 1

m

m∑
i=1

(∇fN (θ̄k)± gki )>gki +
1

m

m∑
i=1

γ2L

2
‖gki ‖

2

≤ fN (θ̄k)− 1

m

m∑
i=1

(
γ‖gki ‖

2 − γ2L

2
‖gki ‖

2
)

︸ ︷︷ ︸
seen before

− γ 1

m

m∑
i=1

(∇fN (θ̄k)− gki )>gki︸ ︷︷ ︸
error term

≤ fN (θ̄k)− 1

m

(
γ‖gk‖2 − γ2L

2
‖gk‖2

)
+
γ

m

m∑
i=1

‖gki ‖‖∇f
N (θ̄k)− gki ‖

Split the product (2ab ≤ a2 + b2)

γ

m

m∑
i=1

‖gki ‖‖∇f
N (θ̄k)− gki ‖ ≤

1

m

m∑
i=1

(
γ2L

2
‖gki ‖

2 +
1

2L
‖∇fN (θ̄k)− gki ‖

2
)
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Bounding Tracking Error

Inequality for descent:

fN (θ̄k+1) ≤ fN (θ̄k)− 1

m
γ (1− γL) ‖gk‖2 +

1

m

m∑
i=1

1

2L
‖∇fN (θ̄k)− gki ‖

2

︸ ︷︷ ︸
tracking error

.

Facts:

• We used consensus to force gki → ḡk

• ḡk = 1
m

∑m
i=1∇fi(θ

k
i )

• We used consensus to force θki → θ̄k

Split the terms accordingly

‖∇fN (θ̄k)− gki ‖ ≤ ‖∇f
N (θ̄k)− ḡk‖+ ‖ḡk − gki ‖

=
∥∥∥ 1

m

m∑
j=1

∇fj(θ̄k)−∇fj(θkj ))
∥∥∥+ ‖ḡk − gki ‖

≤ 1

m

m∑
j=1

L‖θ̄k − θkj ‖+ ‖ḡk − gki ‖
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Bounding Consensus Error (θ part)

Introduce averaging matrix J = 1
m11>

• θ̄
k

= Jθk

• JW = J

• ‖J −W‖2 ≤ ρ (graph is connected)

Then we can bound consensus error on θ as

θ̄
k+1 − θk+1 = (J − I)θk+1

= (J − I)(Wθk − γ · gk)

= (J −W )θk − γ (J − I)gk︸ ︷︷ ︸
consensus error of gki

Taking `2 norm:

‖θ̄k+1 − θk+1‖ ≤ ρ‖θ̄k − θk‖+ γ‖ḡk − gk‖
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Bounding Consensus Error (g part)

Now we need to bound ḡk − gk.

Tracking dynamics:

gk+1 = W (gk +∇F (θk+1)−∇F (θk))

Multiplying by J −W :

‖ḡk+1 − gk+1‖ = ‖(J −W )
(
gk +∇F (θk+1)−∇F (θk)

)
‖

≤ ρ‖ḡk − gk‖+ ρL‖θk+1 − θk‖

≤ ρ‖ḡk − gk‖+ ρL‖Wθk − γgk − θk‖

≤ ρ‖ḡk − gk‖+ ρL‖(W − J)θk‖+ γρL‖gk‖+ ρL‖(J − I)θk‖

≤ ρ‖ḡk − gk‖+ 2ρL‖θ̄k − θk‖+ γρL‖gk‖

HW: complete the proof
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Directed Graph

DGT in matrix form

θk+1 = Wθk − γ · gk

gk+1 = W (gk +∇F (θk+1)−∇F (θk))

Doubly stochastic W : generally requires graph undirected

Do we really need double stochasticity?

Properties we need are

• consensus of θi ⇒ W being row stochastic

• each gi ∝ 1
m

∑m
i=1∇fi(θi) ⇒ W being column stochastic

But we can use two matrices to split the work!
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The Push-Pull Algorithm

Row stochastic R and column stochastic C:

θk+1 = Rθk − γ · gk

gk+1 = C(gk +∇F (θk+1)−∇F (θk))

Implementation:

• Pull θi from in-neighbors and then averages

• Split gi and push to out-neighbors

• can be adapted to time-varying network if knowing the #out-neighbors
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Supplemental - DGD

DGD iterate: θk+1 = Wθk − γk · ∇F (θk)

The average process:

θ̄k+1 = θ̄k − γk · 1

m

m∑
i=1

∇fi(θki )︸ ︷︷ ︸
≈∇F (θ̄k)

We almost have a centralized gradient step performed on the average.

The consensus process: θk+1 = Wθk − γk · ∇F (θk)︸ ︷︷ ︸
diminishing perturbation

A key assumption: ‖∇fi(θ)‖ is uniformly bounded

Consequences: Optimization and consensus can be analyzed separately

• Consensus is achieved as long as perturbation diminishes
• Optimality is achieved since the inexact error will vanish
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Supplemental - DGD

Decentralized reformulation

min
{θi}mi=1

1

m

m∑
i=1

fi(θi)

s.t. θi = θj . ⇐⇒ Wθ = θ

The penalized problem

min
θ

m∑
i=1

fi(θi) +
1

2γ
‖θ‖2I−W

GD with step size γ: θk+1 = θk − γ · (∇F (θk) + γ−1(I −W )θk)

Consequences:

• Convergence rate analysis of GD applies directly
• Converge to a neighborhood of θ?
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