Decentralized Optimization for ML
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Collaborative Statistical Machine Learning

Empirical risk minimization: Ls, 25 L4, 24
a O—®
0* € argmin — Zfi(ﬁ; Z;)
o mi3
L1, 2 L3, Z3

Full Data: realizations (z,y) € Z.

Agent Partition: Z = 2, U Z5--- U Z,,; Z;: data of agent i.

Model: hy such that hy(z) ~ y.

Local Loss: fi(6) = 127 X4 y)cz LUho(x),y)
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Example: Decentralized Nonlinear Fitting

Data: (:C,L', yi)
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Example: Decentralized Nonlinear Fitting
Data: (z;,y;)
Model:

h@(m)=91~x2+92~x+93
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Example: Decentralized Nonlinear Fitting
Data: (z;,y;)
Model:

h@(m)=91~x2+92~x+93

Loss Function:

2

00) = 5 (y — ho(2))

NO| —

Local Loss:

Fi(0.2) = 127 Xapez, 3y — ho(x))”
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Example: Decentralized Nonlinear Fitting
Data: (z;,y;)
Model:

hg(m)=91~x2+92~x+03

Loss Function:

00) = = (y — ho())”

NO| —
—
&8
;':
s —
& \ /
}V ;
,
/

Local Loss:

Fi(0.2) = 127 Xapez, 3y — ho(x))”

1
0" ¢ arg;nln o Zfz;(e, Z;)

i=1
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Network Model

Dynamic network topology: Agents are embedded in a time-varying
directed communication graph with general topology

L Lo
H—©

L'@—)@L
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Network Model

Dynamic network topology: Agents are embedded in a time-varying
directed communication graph with general topology

L; Ly
O—©

Nim 2 [agents send info. to i} U {i}

L-@—)C@E
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Network Model

Dynamic network topology: Agents are embedded in a time-varying
directed communication graph with general topology

L Lo
O—©

Nim 2 [agents send info. to i} U {i}
H—®
L; Ly,

Assumptions on the network & agents’ knowledge

® Local information: each agent i knows its f; but not >jzi fi

® Local communications: agent ¢ can receive information from its
“neighbors”

® Long term connectivity: T-strongly connected digraphs 420
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Network Model
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Decentralized Gradient Descent

Empirical risk minimization:

win (0= L350} ()
i=1

£2@><@£4

6;: local copy of 0

Two objectives: consensus and optimality
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Decentralized Gradient Descent

Empirical risk minimization: @7@

min {V(0) = %iﬁ(@)} (P) ‘><
=1

@7@

6;: local copy of 0

Two objectives: consensus and optimality

k+1 _ k
® consensus: 0; " = Z wi;0;
JEN™

® perturbation:
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Decentralized Gradient Descent

Ez £4
Empirical risk minimization: ©) @

mein {fN(G) = %ifz(e)} (P)
i=1

X

JO—6®

6;: local copy of 0

Two objectives: consensus and optimality

k+1 _ k
® consensus: 0; " = Z wi;0;
JEN™

® perturbation: .
k+3 E__k k
0; 2= Y wiyby =" V(0]
jGNf"

e dilemma: (y* | 0: sublinear rate) vs. (v¥ = ~: linear rate but NV, (6*)).
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Speed Accuracy Dilemma

Assume for simplicity d = 1.

Notations:

® Consensus matrix: W = {w;;}
e Stacked local variables: @ = [61,...,0m]"
* Pseudo gradient: VF(8) = [Vf1(61),...,V fm(0m)] "

DGD in matrix form: 8k*1 = we* — ~. VF(6")
Sanity check:

* suppose 8% — 6* (convergence) and 6} = 07 (consensus)
e = Vfi(0*)=0foralli=1,... m.
® cannot achieve both consensus and optimality with constant ~.
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Speed Accuracy Dilemma

Assume for simplicity d = 1.

Notations:

® Consensus matrix: W = {w;;}
e Stacked local variables: @ = [61,...,0m]"
* Pseudo gradient: VF(8) = [Vf1(61),...,V fm(0m)] "

DGD in matrix form: 85*1 = w@* — ~ . VF(6*) needs correction
Sanity check:

* suppose 8% — 6* (convergence) and 6} = 07 (consensus)
e = Vfi(0*)=0foralli=1,... m.
® cannot achieve both consensus and optimality with constant ~.
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Decentralized Gradient Tracking

Empirical risk minimization:

Lo Ly
@Q—®
1 m
min fN(Q):* fi(0) (P) ‘><
o= 2] 0—0,

e correct direction:

k 1 m - (pk
9 = 7 2im1 VSi(07)
k—&-l k k 7 m 7 )
0,77 = > wi0f —o" Ao

je/\/';‘"

e gradient tracking:

it = D7 wiglf + VIO = VI 6)
JENT
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How Tracking Works?
In vector form:
gl Wi(gh + VFE@OFY) — VF(6"))
W is doubly stochastic:

e Consensus forcing W1 =1
® Sum preserving 1TW =17

Taking sum:
gt =1Tw(g" + VF(O") - vF(6"h)
=17 (g" + VF(O") — vF(6"))
Initialize g° = VF(6°), then 1Tgk = 1TV F(6%).

If 0;'s and g;'s are consensual, then gF — VN (0%).
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Convergence Proof

Assumption: Each Vf; is L-smooth, p 2 (W — J) < 1.
DGT in matrix form:

0kl — ek — . g"
g = Wk + VF@OFY) — VF(6F))
The average process:
ghtl _ gk _ . gk

79

m
=0 — . 1 Z V£ (6F) (tracking property)
m
i=1
The average process can be viewed as the inexact centralized GD on 6*
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GD Proof Recap

Gradient iteration:
e+ — gk v N (")
Apply descent lemma
I B R (e A e M e R e

2
= 0% 3 IV )P + LR )
~———

~—_—
O(v) 0(~?)

By the monotone convergence theorem: if v < %, then

o {N(6%)} converges
o VAN E") =0
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Main Steps

Step 1: Descent on the average

L (=) g2+ L5 L et — g2
m 2L g

m -
i=1

fN(§k+1) < fN(ék)

tracking error
Step 2: Bounding tracking error
N gk k L=k ok kE_ k
IVFE07) —gill = D OLIOT =651+ llg" — g |
j=1
Step 3: Bounding consensus error
Ak+1 k1 2k ok kK
107" — "1 < pll6” — 0%|| + /8" — &"|
k41 k41 kK ak ok k
18" — g™ < plig" — "l + 2oL (16" — 6%|| + 7Ll ||
Consequence: tracking error = O(y2|g*||?) = descent if ~ is small

enough
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Inexact Gradient Descent

Inexact gradient descent:

ak+1 ok _k
0" =6 —~.g

By the descent lemma
_ _ T _ L. - _
fN(9k+1) S fN(ek) + VfN(ak)T(ek-l—l _ ek) + §H9k+1 _ ekHQ
2
_ T L
= M@ - v EY T+ R
m

N 7k 1 NoginT ko L ~=2’Ly g2
<f (9)—’7'EE Vo) 9i+a§ - llgi |l
i=1

i=1

If V£V (6%) were equal to g¥ then we are done. But it's not that bad...

Remember we are constructing g; to track vV (6%)
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Inexact Gradient Descent (Cont.)

Descent Lemma
m

FY@Y < £ Z o m—zﬁuzn

1 m ’y L
N /pk k2 k2
<N %EZ(vngi 12 - E 10k
=1
seen before

LSV - o) ok

i=1

error term
N7k 1 k2 VL k2 Y Nk N 7k k
<07 - —(letl” = - llgl +EZ”91’HHVJC (0%) —gi |
1=1

Split the product (2ab < a? + b?)
TSI ) gl < S0 (LR b 1 e @) - gt
m v tT=m pt 2 ¢ 2L v
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Bounding Tracking Error

Inequality for descent:

- 1 > 11 -
Y@ < VO - @ =AD) 517+ D S IV @) o)

i=1

tracking error

Facts:
® \We used consensus to force gf — gk

° —k 1 Zm vfz(‘gf)
e We used consensus to force 6% — 6*

Split the terms accordingly
VY ©@°) = gf I < IV Y0 - g1l + 115" - o7

I ivfj@k) = VIO +115" = ok

m " L
*ZLHG — 051+ 115" — gf
Jj=1

I A
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Bounding Consensus Error (0 part)
Introduce averaging matrix J = 2117

. 6" = jo*
e JW=J
e ||J—W|l2 < p (graph is connected)

Then we can bound consensus error on 6 as

ghtl _ g+l — (J— I)9k+1

=(J-D)(We" —~-g")

=(J-W)e* -~ (J-Dg"
~——

consensus error of gf

Taking ¢2 norm:
k41 k+1 ~k k _k k
16" — 0" 1| < p)|6” — 6%|| +~|g" — &
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Bounding Consensus Error (g part)

Now we need to bound g" — g".

Tracking dynamics:

g"tt = w(gh + vF(e*t) — vF(e*))

Multiplying by J — W:

I8 — g = 11 - w) (g + VEEFT) - vE6h)) |
<plg" "l + pLl6" " — 6

<plg" - "l + pLIWO" — 1g" — 6"

< plg" — "Il + pLI(W — 1)6"|| + voLllg" | + pL||(J — 1)6"|

_k k —k k k
<plg" —g"ll +2pL)|0" — 67 || +vpL|g” |

HW: complete the proof
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Directed Graph

DGT in matrix form

0kt — ek — . g"
gt = w(gh + vF(ert) — vF(e*))

Doubly stochastic W: generally requires graph undirected
Do we really need double stochasticity?

Properties we need are

e consensus of §; = W being row stochastic
e each g; x L 3" Vf;(6;) = W being column stochastic

m

But we can use two matrices to split the work!
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The Push-Pull Algorithm

Row stochastic R and column stochastic C:

9k+1 _ Rek — - gk
gk:"rl _ C(gk} + VF(ekH-l) _ VF(okt))

Implementation:

e Pull 9; from in-neighbors and then averages

e Split g; and push to out-neighbors

® can be adapted to time-varying network if knowing the #out-neighbors
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Supplemental - DGD
DGD iterate: 9%t1 = we* —~*. vF(6%)

The average process:

_ _ 1 &
=gt ot ;Vfi(eb

~VF(0k)

We almost have a centralized gradient step performed on the average.

The consensus process: 6511 = Wwe* — % . vF(6")
—_——

diminishing perturbation
A key assumption: ||V f;(0)| is uniformly bounded
Consequences: Optimization and consensus can be analyzed separately
e Consensus is achieved as long as perturbation diminishes

e Optimality is achieved since the inexact error will vanish
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Supplemental - DGD

Decentralized reformulation
1 m
min = — 1i(6;)
{67, m; '

s.t. 0;=0;,, <— W6=60

The penalized problem

m
. 1
min ;fi(ei) + EHGH%—W
1=
GD with step size y: 081 = 0K — 4. (VF(8%) + 71 (1 — W)6%)
Consequences:
e Convergence rate analysis of GD applies directly

e Converge to a neighborhood of 6*
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