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A Big Picture

A new paradigm for large-scale optimization

Parallel 
Optimization

Distributed 
Optimization

Centralized 
Optimization

Decentralized
Data Storage

Decentralized 
Computation

What distributed structure can bring to us?

– Robust and scablable,
– Amenable to asynchronous running,
– Privacy-preserving,
– Speedup in overall running time
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An Example from Distributed Learning

Data-parallel training beyond the Datacenter.

Other parallel structure

– Model parallel: dealing with large-scale model parameters.
– Hybrid parallel: combining data-parallel and model-parallel.
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Other Examples

Distributed Estimation

Source Localization

Field Monitoring

Distributed Learning

Distributed Control

Wind Farm

Smart/Micro Grid

Formation Flying
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Introduction

Problem and Related Works

Some Preliminaries for The Talk

Graph

– connectivity: connected if there is a
path between every pair of nodes

– spanning tree: a subgraph that is a
tree covering all nodes with minimum
possible number of edges

– root: a subset of nodes that are able to
reach all other nodes

Weight Matrix1 W := [wij ]

– row-stochastic: W1 = 1
– column-stochastic: 1TW = 1T

– doubly-stochastic: W1 = 1, 1TW = 1T

Matrix Induced Graph: W→ GW

1

2

3

4

A Graph G = (V, E)

– vi ∈ V: an agent

– eij ∈ E : the link

– wij : the weight to eij

– Ni := {j |eij ∈ E}: the
neighbors of agent i

1W is non-negative; 1: all-one vector.
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Matrix Induced Graph: W→ GW

1

2

3

4

A Graph G = (V, E)

W =

w11 w12 0 0
w21 w22 0 w24

0 w32 0 0
0 0 w43 w44



1W is non-negative; 1: all-one vector.
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Introduction

Problem and Related Works

Distributed Optimization Problem

Want to solve the following original problem2

min
θ∈R

F (θ) =
m∑
i=1

fi (θ) (DOP)

– θ ∈ R: the global decision variable

– fi : H → R: the cost funciton known
only by the associated agent i .

1

f1(θ) 2

f2(θ)

3f3(θ)

4

f4(θ)

A Network Model G = (V, E)

Equivalent to solve the problem as follows

min
x∈Rm

f (x) =
m∑
i=1

fi (xi ) s.t. xi = xj , ∀i , j ∈ V

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum θ?.

2We consider scalar cases only for simplicity.
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Introduction

Problem and Related Works

A Canonical Example: Average Consensus

A Canonical Example

min
x

m∑
i=1

(xi − ri )
2,

s.t. xi = xj , ∀i , j ∈ V,

– ri : local measurement to the
position of a target,

– xi : local estimate of sensor i .

Average Consensus3

xi ,k+1 =
∑
j∈Ni

wijxj ,k

1

(x1 − r1)2
2

(x2 − r2)2

3(x3 − r3)2

4

(x4 − r4)2

T

θ?

θ? = 1
m

∑
i ri : position of target

Task: x1 = x2 = x3 = x4 = θ?

3Refer to (Olfati-Saber and Murray, 2004)
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A Canonical Example

min
x

m∑
i=1

(xi − ri )
2,

s.t. xi = xj , ∀i , j ∈ V,

– ri : local measurement to the
position of a target,

– xi : local estimate of sensor i .

Average Consensus3

xi ,k+1 =
∑
j∈Ni

wijxj ,k

Lemma (Average Seeking)

If W is doubly stochastic, then
with x0 = r we have∑

i

xi ,k =
∑
i

ri ,∀k ≥ 0

and, if the graph is connected,

xi → θ? =
1

m

∑
i

ri , ∀i ∈ V

3Refer to (Olfati-Saber and Murray, 2004)
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Introduction

Problem and Related Works

A Canonical Example: Dynamic Average Consensus

A Canonical Example

min
x

m∑
i=1

(xi − ri ,k)2,

s.t. xi = xj ,∀i , j ∈ V,

– ri,k : the local measurement
which is time-varying.

Dynamic Average Consensus4

xi ,k+1 =
∑
j∈Ni

wijxj ,k+ri ,k+1−ri ,k

1

(x1 − r1,k)2
2

(x2 − r2,k)2

3(x3 − r3,k)2

4

(x4 − r4,k)2

T

θ?k
T

θ?k : position of target

Task: x1 = x2 = x3 = x4 → θ?k

4Refer to (Zhu and MartÃnez, 2010)
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A Canonical Example

min
x

m∑
i=1

(xi − ri ,k)2,

s.t. xi = xj ,∀i , j ∈ V,

– ri,k : the local measurement
which is time-varying.

Dynamic Average Consensus4

xi ,k+1 =
∑
j∈Ni

wijxj ,k+ri ,k+1−ri ,k

Lemma (Average Tracking)

If W is doubly stochastic, then
with x0 = r0 we have∑

i

xi ,k =
∑
i

ri ,k , ∀k ≥ 0

and, if the graph is connected

xi ,∞ → θ?∞ =
1

m

∑
i

ri ,∞, ∀i ∈ V

4Refer to (Zhu and MartÃnez, 2010)
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Introduction

Problem and Related Works

Distributed Subgradient Methods: A seminal work

DSM Algorithm (Nedic and Ozdaglar, 2009)

xi ,k+1 =
∑
j∈Ni

wijxj ,k︸ ︷︷ ︸
average consensus

− γk · si ,k︸ ︷︷ ︸
gradient search

– γk is the stepsize chosen by agents at time k,
– si,k ∈ ∂fi (xi,k) is the subgradient of fi evaluated at xi,k ,

Convergence Result for γk ≡ γ (Yuan et al., 2013)

max {Disagreement,Optimality Gap} ≤ O(1/k) +O(γ)

– steady state error5 O(γ),
– decaying stepsize for exact optimum seeking,
– bounded (sub)gradient (even for smooth fi : ‖∇fi‖ < C).

5O(·) denotes the order of magnitude
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Introduction

Problem and Related Works

Other distributed algorithms6

Consensus-based (Primal-only)
– Dual Averaging (Duchi et al., 2012)
– Diffusion Strategy (Chen and Sayed, 2012)
– Newton-Raphson Consensus (Zanella et al., 2011)
– Fast Distributed Gradient (Jakovetic et al., 2014)
– Stochastic Gradient Push (Nedic and Olshevsky, 2014)

pros: easy to analyze even for dynamic networks
cons: steady-sate error; decaying stepsize ⇒ O( ln k

k
)

Dual-decomposition-based (Primal-Dual)
– D-ADMM (Wei and Ozdaglar, 2012; Mota et al., 2013; Shi et al.,

2014); IC-ADMM (Chang et al., 2015), ADMM+ (Bianchi and
Hachem, 2014), DLM (Ling et al., 2015)

– Augmented Lagrangian Method (Wang and Elia, 2011; Gharesifard
and Cortes, 2014)

– Primal-Dual Method: EXTRA, PG-EXTRA (Shi et al., 2015a,b)

pros: no steady-state error; constant stepsize ⇒ O( 1
k

) or even O(λk)
cons: difficult to analyze for dynamic networks

6Refer to (Nedić et al., 2018) for a recent comprehensive survey
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Introduction

Objectives and Challenges

Objectives and Challenges

Objectives

– exact optimal solution
– fast convergence rates
– general networks

asynchronous
directed
...

Challenges

– varying topology
– asynchrony
– heterogeneity

uncoordinated stepsize
directed graph

Distributed
Optimization

PrivacyScalability

Computational
Complexity

H
eterogeneity

Va
ry

in
g 

To
po

lo
gy

Asynchronous
Implemntation
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Distributed Gradient Tracking Methods

Algorithm Development

Recalling the DSM algorithm for smooth functions7

xk+1 = Wxk︸ ︷︷ ︸
average consensus

− γg(xk)︸ ︷︷ ︸
gradient search

,

– where g(xk) := [∇f1(x1),∇f2(x2), ...,∇fm(xm)]T

Limit point analysis (W doubly stochastic ⇒ (I−W)1 = 0):

x∞ → θ1 ⇒ 0 = (W − I)x∞ = γg(x∞)6=0

– otherwise we have ∇fi (θ) = 0,∀i = 1, 2, ...,m

essentially not able to reach consensus!

7Here, we consider a constant stepsize for simplicity.
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Distributed Gradient Tracking Methods

Algorithm Development

Replacing with the ideal average of gradients

xk+1 = Wxk − γ��
��*

11T

m g(xk) = 1 1
m

∑
i ∇fi (xi ,k)

g(xk) ,

– where 11T

m := [ 1
m ] is the average matrix.

Limit point analysis (W doubly stochastic ⇒ (I−W)1 = 0):

x∞ → θ1 ⇒ 0 = (W− I)x∞ = γ
11T

m
g(x∞) ⇒ ∇F (θ) = 0

We are now able to reach consensus!

But 11T

m g(xk) not immediately available, how to obtain?
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Distributed Gradient Tracking Methods

Algorithm Development

Replacing with the pseudo average of gradients

xk+1 = Wxk − γ
��

�
��
�*

yk
11T

m
g(xk) ,

– where yk is the surrogate of the average of gradients.

Resorting to Dynamic Average Consensus:

yk+1 = Wyk + g(xk+1)− g(xk)

Average gradient tracking:

y0 = g(x0) ⇒ yi ,∞ =
1

m
1Tg(x∞), i ∈ V

– when k →∞, yk essentially tracks the average of gradients.
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Distributed Gradient Tracking Methods

Algorithm and Implementation

AugDGM Algorithm7

xk+1 = Wxk − γyk

yk+1 = Wyk + g(xk+1)− g(xk),

– yk is the auxiliary variable tracking the average of the gradients.

1 Initialization: ∀ agent i ∈ V: xi,0 randomly assigned; yi,0 = ∇fi (xi,0).

2 Local Optimization: ∀ agent i ∈ V, computes:

xi,k+1 =
∑
j∈Ni

wijxj,k − γ · yi,k

3 Dynamic Average Consensus: ∀ agent i ∈ V, computes:

yi,k+1 =
∑
j∈Ni

wijyj,k +∇fi (xi,k+1)−∇fi (xi,k)

4 Set k → k + 1 and go to Step 2.
7More general form can be found in (Xu et al., 2015)
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Convergence Analysis: Preliminary

Notations
– x?: the optimal solution

– x̄ = 11T

m
x (average), x̃ = (I− 11T

m
)x (disagreement)

– ρ: the spectral radius of a given matrix

Properties of cost functions
– µ-strongly convex:∥∥ψ(v)− ψ(v′)

∥∥ ≥ µ ∥∥v − v′
∥∥ , ∀v, v′ ∈ Rm

– L-smooth: ∥∥∇ψ(v)−∇ψ(v′)
∥∥ ≤ L

∥∥v − v′
∥∥ ,∀v, v′ ∈ Rm
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Convergence Analysis8

Assumptions
– Cost functions {fi}: µ-strongly convex, L-smooth
– Weight Matrix:

1TW = 1T , W1 = 1 and ρW := ρ
(

W − 11T

m

)
< 1

– There exists a solution to the problem

Theorem (Linear Rate for AugDGM)

Let {xk , yk}k≥0 be the iterates generated by AugDGM with y0 = g(x0).
Let κ = L/µ and suppose the above Assumptions hold. Then, if

γ <
(1− ρW )2

(1 +
√
κ+ 3)L

,

the residuals ‖x̄k − x?‖ and ‖x̃k‖ converge linearly to zero.

8Refer to (Xu et al., 2015, 2018b) for more details.
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

A Sensor Fusion Example

Overall loss function

F (θ) =
m∑
i=1

‖zi −Miθ‖2

– θ ∈ Rd : the unknown parameter
– Mi ∈ Rs×d : measurement matrix
– zi ∈ Rs : the observation of sensor i

Metropolis-Hastings protocol

wij =


1

max{di ,dj}
, if (i , j) ∈ E

1−
∑

j∈Ni
wij , if i = j

0, otherwise,

– di : the degree of node i .

A random network of 50 nodes
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Performance Evaluation

Parameter Setting: d = 4, s = 1; Mi : a unit uniform distribution;

Gaussian Noise: N (0, 0.1)

200 400 600 800 1000 1200 1400 1600

10−20

10−15

10−10

10−5

100

Iterations

R
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id
ua

l (
lo

g)
AugDGM Vs DSM

 

 

DSM: γ=0.5/k1/2

DSM: γ=0.1
DSM: γ=0.2
AugDGM: γ=0.1
AugDGM: γ=0.2

Residual (res = ‖xk−x?‖2

‖x0−x?‖2 ) Vs. Iterations
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Distributed Gradient Tracking Methods

Extension to General Networks

Extension to Directed Networks

Extended to directed networks by graph splitting

GW ⇒ GR ⊕ GC

1

2

3

4

(a) GW

1

2

3

4

(b) GR

1

2

3

4

(c) GC

– R: Row-stochastic matrix; C: Column-stochastic matrix

Push-Pull Algorithm

xk+1 = Rxk − γyk

yk+1 = Cyk + g(xk+1)− g(xk),

– xk : the decision pulled from the neighbors for average consensus
– yk : the gradient pushed to the neighbors for gradient tracking.
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Distributed Gradient Tracking Methods

Extension to General Networks

Convergence Analysis

Assumptions
– Cost functions {fi}: µ-strongly convex, L-smooth
– The subgraph GR and GCT

9

each contains at least a spanning tree, i.e.,

ρR = ρ(R− 11T

m
) < 1, ρC = ρ(C− 11T

m
) < 1

have a common root, i.e., information flow is not blocked

– There exists a solution to the problem

Theorem (Linear Rate for Push-Pull)

Let {xk , yk}k≥0 be the iterates generated by Push-Pull with y0 = g(x0).
Let κ = L/µ and suppose the above Assumptions hold. Then, if

γ <
(1− ρR)(1− ρC )

φ(κ,R,C)L
,

the residuals ‖x̄k − x?‖ and ‖x̃k‖ converge linearly to zero.

9GCT = GC with edges reversed; Refer to (Pu et al., 2020) for more detials.
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Equivalent Primal-Dual Problems

Recalling the orginal DOP problem as follows

min
x∈Rm

f (x) =
m∑
i=1

fi (xi )

s.t. xi = xj , ∀i , j ∈ V

– x = [x1, x2, ...xm]T : the local estimates of agents.

Equivalent 10 to the (primal) optimal consensus problem

min
x∈Rm

f (x) =
m∑
i=1

fi (xi )

s.t. (I−W)x = 0,

(OCP)

– W: the weight matrix associated with the network

10If the graph is strongly connected such that null(I−W) = span(1).
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Equivalent Primal-Dual Problems

The Lagrange dual problem is depicted as follows

max
y′∈Rm

min
x∈Rm

{
f (x) + y′

T
(I−W)x

}
– y′ = [y ′1, y

′
2, ..., y

′
m]T : the Lagrange multiplier or dual variables.

Let y = (I−W)y′. The above problem becomes

max
y∈Rm

min
x∈Rm

{f (x) + 〈y, x〉} = max
y∈Rm

−f ∗(−y)

– f ∗: the convex conjugate of the function f .

1Ty = 1T (I−W)y′ = 0 ⇒ the (dual) optimal exchange problem

min
y∈Rm

f ∗(y) =
m∑
i=1

f ∗i (yi )

s.t. 1Ty = 0,

(OEP11)

– y = [y1, y2, ..., ym]T : the introduced dual variables.
11Refer to (Xu et al., 2018c) for more details.



When distributed optimization algorithms meet centralized ones and beyond (Online, Apr 2020) ©2020 Jinming Xu

Distributed Primal-Dual Methods

Equivalent Primal-Dual Problems

The Lagrange dual problem is depicted as follows

max
y′∈Rm

min
x∈Rm

{
f (x) + y′

T
(I−W)x

}
– y′ = [y ′1, y

′
2, ..., y

′
m]T : the Lagrange multiplier or dual variables.

Let y = (I−W)y′. The above problem becomes

max
y∈Rm

min
x∈Rm

{f (x) + 〈y, x〉} = max
y∈Rm

−f ∗(−y)

– f ∗: the convex conjugate of the function f .

1Ty = 1T (I−W)y′ = 0 ⇒ the (dual) optimal exchange problem

min
y∈Rm

f ∗(y) =
m∑
i=1

f ∗i (yi )

s.t. 1Ty = 0,

(OEP11)

– y = [y1, y2, ..., ym]T : the introduced dual variables.
11Refer to (Xu et al., 2018c) for more details.



When distributed optimization algorithms meet centralized ones and beyond (Online, Apr 2020) ©2020 Jinming Xu

Distributed Primal-Dual Methods

Equivalent Primal-Dual Problems

The Lagrange dual problem is depicted as follows

max
y′∈Rm

min
x∈Rm

{
f (x) + y′

T
(I−W)x

}
– y′ = [y ′1, y

′
2, ..., y

′
m]T : the Lagrange multiplier or dual variables.

Let y = (I−W)y′. The above problem becomes

max
y∈Rm

min
x∈Rm

{f (x) + 〈y, x〉} = max
y∈Rm

−f ∗(−y)

– f ∗: the convex conjugate of the function f .

1Ty = 1T (I−W)y′ = 0 ⇒ the (dual) optimal exchange problem

min
y∈Rm

f ∗(y) =
m∑
i=1

f ∗i (yi )

s.t. 1Ty = 0,

(OEP11)

– y = [y1, y2, ..., ym]T : the introduced dual variables.
11Refer to (Xu et al., 2018c) for more details.



When distributed optimization algorithms meet centralized ones and beyond (Online, Apr 2020) ©2020 Jinming Xu

Distributed Primal-Dual Methods

Algorithm and Implementation

ID-FBBS Algorithm12

xk+1 = Wxk − γ(g(xk) + yk)

yk+1 = yk +
1

γ
(I−W)xk+1,

– yk is the dual variable whose sum is maintained at zero.

1 Initialization: ∀ agent i ∈ V: xi,0 randomly assigned;
∑

i∈V yi,0 = 0.
2 Primal Update: ∀ agent i ∈ V, computes:

xi,k+1 =
∑
j∈Ni

wijxj,k − γ(gi (xi,k) + yi,k)

3 Dual Update: ∀ agent i ∈ V, computes:

yi,k+1 = yj,k +
1

γ

∑
j∈Ni

wij(xi,k+1 − xj,k+1)

4 Set k → k + 1 and go to Step 2.
12More general form can be found in (Xu et al., 2016)
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Algorithm, Convergence and Performance

Convergence Analysis

Assumptions

– Cost functions {fi}: L-smooth

– Weight Matrix: 1TW = 1T ,W1 = 1, ρ
(

W − 11T

m

)
< 1, and

W = WT ,W > 0
– There exists a saddle point to the OCP-OEP problem

Theorem (Sublinear rate for ID-FBBS)

Let {(xk , yk)}k≥0 be the iterates generated by ID-FBBS with 1Ty0 = 0.
Suppose the above Assumptions hold. Then, if

γ <
λmin(W)

L
,

it will converge to an optimal solution pair (x?, y?) where x? solves
the OCP problem while y? solves the OEP problem.

and converge at a rate13 of O( 1
k ).

13holds for non-smooth functions (Xu et al., 2018a); Linear rate (Shi et al., 2015a)
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Connections to Existing Algorithms

Connections to Existing Algorithms

Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(g(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

Setting y0 = 0, summing (b) and substituting into (a) yields

xk+1 = Wxk − γg(xk)︸ ︷︷ ︸
DSM

−
k∑

i=0

(I−W)xi︸ ︷︷ ︸
Correction

,

– equivalent16 to EXTRA with W = W̃ = I+W′

2
in x-update,

– W̃,W′ are two weight matrices of EXTRA (Shi et al., 2015a).

16Refer to (Xu et al., 2016, 2018a) for more details
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Connections to Existing Algorithms

Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(g(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

Let γyk =
√

I−Wy′k , the above algorithm can be rewritten as

xk+1 = Wxk − γg(xk)−
√

I−Wy′k

y′k+1 = y′k +
√

I−Wxk+1

Equivalent to applying the Arrow-Hurwicz-Uzawa Method17{
xk+1 = xk − γ∇xL(x, y′k)

y′k+1 = y′k + γ∇y′L(xk+1, y
′)

– where L(x, y′) = f (x) + 1
γ

xT
√

I−Wy′ + 1
2γ

xT (I−W)x
17Refer to (Xu et al., 2016, 2018a) for more details
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Connections to Existing Algorithms

Taking the augmented Lagrangian as follows:

L(x, y′) = f (x) +
1

γ
xT (I−W)y′ +

1

2γ
xT (I−W2)x,

Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = W2xk − γg(xk)− (I−W)y′k (c)

y′k+1 = y′k + (I−W)xk+1 (d)

Evaluating (c) at k + 1 and k , respectively and eliminating y′ using
(d), simple calculation gives

xk+2 −Wxk+1 = W(xk+1 −Wxk) + γ(g(xk+1)− g(xk))

Let γyk+1 = xk+2 −Wxk+1. Then, we recover

the original AugDGM

{
xk+1 = Wxk − γyk

yk+1 = Wyk + g(xk+1)− g(xk).
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A Unified Algorithm

A unified algorithm18

xk+1 = Axk − γBg(xk)− yk ,

yk+1 = yk + Cxk+1,

– where A,B,C are three weight matrices to be properly defined.

The above unified algorithm subsumes many existing algorithms.

Algorithm A B C

ID-FBBS/EXTRA 1
2
(I + W) I 1

2
(I−W)

NIDS/Exact Diffusion 1
2
(I + W) 1

2
(I + W) 1

2
(I−W)

AugDGM/NEXT W2 W2 (I−W)2

DIGing/Harnessing W2 I (I−W)2

18More general form can be found in (Xu et al., 2020b)
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General Convex and Smooth Case: Sublinear rate

Sublinear Convergence Rate

Let Sm be the set of m ×m symmetric matrices.

Assumptions

– Cost function {fi}: L-smooth;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, 0 � A � I− C,
iii) span(1) = null(C) ⊆ null(I− A).

Theorem (Sublinear rate for the unified algorithm)

Let {(xk , yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above hold. Then, if γ = min{ 1

L ,O(
√
η)}, the

algorithm converges at a sublinear rate of

max

{
L
∥∥x0 − x?

∥∥2

k + 1
,

1√
η(C)

∥∥x0 − x?
∥∥ ‖g(x?)‖

k + 1

}
,

where η(C) := λmin(C)
λmax(C)

denotes the eigengap of the matrix C.
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General Convex and Smooth Case: Sublinear rate

Some Observations

The convergence rate has the following structure19

max


L
∥∥x0 − x?

∥∥2

k + 1︸ ︷︷ ︸
computation

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖g(x?)‖

k + 1︸ ︷︷ ︸
communication


g(x?)=0⇒ O

(
L
∥∥x0 − x?

∥∥2

k + 1

)
︸ ︷︷ ︸

centralized rate

.

1/
√
η ≈ the diameter of the network for simple networks, e.g., line graphs

‖g(x?)‖ encodes the “heterogeneity” of functions; g(x?) = 0 implies

– Case 1: When all agents share common solution, e.g., the
distribution of all local data sets are similar.

– Case 2: When a spanning tree algorithm is employed, e.g,
exact average of local data, e.g., local gradients.

The algorithm reduces to the centralized one!

19Refer to (Xu et al., 2020a,b) for more details.
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Strongly Convex and Smooth Case: Linear rate

Linear Convergence Rate

Let Sm be the set of m ×m symmetric matrices.

Assumptions
– Cost function {fi}: L-smooth and µ-strongly convex;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, B2 � I− C,
iii) span(1) = null(C) ⊆ null(I− A).

Theorem (Linear rate for the unified algorithm)

Let {(xk , yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 2

L+µ , the

algorithm converges at a linear rate of O(σk) with

σ = max

{(
κ− 1

κ+ 1

)2

, 1− λmin(C)

}
,

where λmin(C) denotes the connectivity of the graph.
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Linear Convergence Rate

Let Sm be the set of m ×m symmetric matrices.
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κ− 1
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)2

, 1− λmin(C)

}
,

where λmin(C) denotes the connectivity of the graph.
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Strongly Convex and Smooth Case: Linear rate

Balancing Communication and Computation20

Set A = B = I− C = Wk and ρopt = κ−1
κ+1 , ρcom = ρ(W − 11T

m )

Connectivity of the Graph (ρcom)
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Perform similar as centralized counterparts
with finite number of inner consensus steps

20More details can be found in (Xu et al., 2020b)
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Summary

Proposed a class of distributed algorithms that work for fixed,
undirected or directed networks,

Showed their basic convergence and the relationships between
primal-only methods and primal-dual methods,

Provided a unified algorithmic framework and showed the
condition to achieving the “centralized” performance.
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Recommendation for future work

Communication and Computation Trade-offs

O(comm.) Vs. O(comp.)

– complexity, optimality, fundamental limits

Extension and Generalization

– constraints, general graphs, total asynchrony...

Security and Privacy

– robust and secure against malicious attacks
– protect the data in optimization process

Applications

– UAVs, Internet of Things, Artificial Intelligence...
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