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A Big Picture

A new paradigm for large-scale optimization

Parallel 
Optimization

Distributed 
Optimization

Centralized 
Optimization

Decentralized
Data Storage

Decentralized 
Computation

What distributed structure can bring to us?

– Robust and scablable,
– Amenable to asynchronous running,
– Privacy-preserving,
– Speedup in overall running time
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An Example from Distributed Learning

Data-parallel training beyond the Datacenter.

Other parallel structure

– Model parallel: dealing with large-scale model parameters.
– Hybrid parallel: combining data-parallel and model-parallel.
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Other Examples

Distributed Estimation

Source Localization

Field Monitoring

Distributed Learning

Distributed Control

Wind Farm

Smart/Micro Grid

Formation Flying
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Introduction

Problem and Related Works

Some Preliminaries for The Talk

Graph

– connectivity: connected if there is a
path between every pair of nodes

– spanning tree: a subgraph that is a
tree covering all nodes with minimum
possible number of edges

– root: a subset of nodes that are able to
reach all other nodes

Weight Matrix1 W := [wij ]

– row-stochastic: W1 = 1
– column-stochastic: 1TW = 1T

– doubly-stochastic: W1 = 1, 1TW = 1T

Matrix Induced Graph: W→ GW

1

2

3

4

A Graph G = (V, E)

– vi ∈ V: an agent

– eij ∈ E : the link

– wij : the weight to eij

– Ni := {j |eij ∈ E}: the
neighbors of agent i

1W is non-negative; 1: all-one vector.
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Graph

– connectivity: connected if there is a
path between every pair of nodes

– spanning tree: a subgraph that is a
tree covering all nodes with minimum
possible number of edges

– root: a subset of nodes that are able to
reach all other nodes

Weight Matrix1 W := [wij ]

– row-stochastic: W1 = 1
– column-stochastic: 1TW = 1T

– doubly-stochastic: W1 = 1, 1TW = 1T

Matrix Induced Graph: W→ GW

1

2

3

4

A Graph G = (V, E)

W =

w11 w12 0 0
w21 w22 0 w24

0 w32 0 0
0 0 w43 w44



1W is non-negative; 1: all-one vector.



When distributed optimization algorithms meet centralized ones and beyond (Online, Apr 2020) ©2020 Jinming Xu

Introduction

Problem and Related Works

Distributed Optimization Problem

Want to solve the following original problem2

min
θ∈R

F (θ) =
m∑
i=1

fi (θ) (DOP)

– θ ∈ R: the global decision variable

– fi : H → R: the cost funciton known
only by the associated agent i .

1

f1(θ) 2

f2(θ)

3f3(θ)

4

f4(θ)

A Network Model G = (V, E)

Equivalent to solve the problem as follows

min
x∈Rm

f (x) =
m∑
i=1

fi (xi ) s.t. xi = xj , ∀i , j ∈ V

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum θ?.

2We consider scalar cases only for simplicity.
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Introduction

Problem and Related Works

A Canonical Example: Average Consensus

A Canonical Example

min
x

m∑
i=1

(xi − ri )
2,

s.t. xi = xj , ∀i , j ∈ V,

– ri : local measurement to the
position of a target,

– xi : local estimate of sensor i .

Average Consensus3

xi ,k+1 =
∑
j∈Ni

wijxj ,k

1

(x1 − r1)2
2

(x2 − r2)2

3(x3 − r3)2

4

(x4 − r4)2

T

θ?

θ? = 1
m

∑
i ri : position of target

Task: x1 = x2 = x3 = x4 = θ?

3Refer to (Olfati-Saber and Murray, 2004)
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A Canonical Example

min
x

m∑
i=1

(xi − ri )
2,

s.t. xi = xj , ∀i , j ∈ V,

– ri : local measurement to the
position of a target,

– xi : local estimate of sensor i .

Average Consensus3

xi ,k+1 =
∑
j∈Ni

wijxj ,k

Lemma (Average Seeking)

If W is doubly stochastic, then
with x0 = r we have∑

i

xi ,k =
∑
i

ri ,∀k ≥ 0

and, if the graph is connected,

xi → θ? =
1

m

∑
i

ri , ∀i ∈ V

3Refer to (Olfati-Saber and Murray, 2004)
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Introduction

Problem and Related Works

A Canonical Example: Dynamic Average Consensus

A Canonical Example

min
x

m∑
i=1

(xi − ri ,k)2,

s.t. xi = xj ,∀i , j ∈ V,

– ri,k : the local measurement
which is time-varying.

Dynamic Average Consensus4

xi ,k+1 =
∑
j∈Ni

wijxj ,k+ri ,k+1−ri ,k

1

(x1 − r1,k)2
2

(x2 − r2,k)2

3(x3 − r3,k)2

4

(x4 − r4,k)2

T

θ?k
T

θ?k : position of target

Task: x1 = x2 = x3 = x4 → θ?k

4Refer to (Zhu and MartÃnez, 2010)
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A Canonical Example

min
x

m∑
i=1

(xi − ri ,k)2,

s.t. xi = xj ,∀i , j ∈ V,

– ri,k : the local measurement
which is time-varying.

Dynamic Average Consensus4

xi ,k+1 =
∑
j∈Ni

wijxj ,k+ri ,k+1−ri ,k

Lemma (Average Tracking)

If W is doubly stochastic, then
with x0 = r0 we have∑

i

xi ,k =
∑
i

ri ,k , ∀k ≥ 0

and, if the graph is connected

xi ,∞ → θ?∞ =
1

m

∑
i

ri ,∞, ∀i ∈ V

4Refer to (Zhu and MartÃnez, 2010)
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Introduction

Problem and Related Works

Distributed Subgradient Methods: A seminal work

DSM Algorithm (Nedic and Ozdaglar, 2009)

xi ,k+1 =
∑
j∈Ni

wijxj ,k︸ ︷︷ ︸
average consensus

− γk · si ,k︸ ︷︷ ︸
gradient search

– γk is the stepsize chosen by agents at time k,
– si,k ∈ ∂fi (xi,k) is the subgradient of fi evaluated at xi,k ,

Convergence Result for γk ≡ γ (Yuan et al., 2013)

max {Disagreement,Optimality Gap} ≤ O(1/k) +O(γ)

– steady state error5 O(γ),
– decaying stepsize for exact optimum seeking,
– bounded (sub)gradient (even for smooth fi : ‖∇fi‖ < C).

5O(·) denotes the order of magnitude
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Introduction

Problem and Related Works

Other distributed algorithms6

Consensus-based (Primal-only)
– Dual Averaging (Duchi et al., 2012)
– Diffusion Strategy (Chen and Sayed, 2012)
– Newton-Raphson Consensus (Zanella et al., 2011)
– Fast Distributed Gradient (Jakovetic et al., 2014)
– Stochastic Gradient Push (Nedic and Olshevsky, 2014)

pros: easy to analyze even for dynamic networks
cons: steady-sate error; decaying stepsize ⇒ O( ln k

k
)

Dual-decomposition-based (Primal-Dual)
– D-ADMM (Wei and Ozdaglar, 2012; Mota et al., 2013; Shi et al.,

2014); IC-ADMM (Chang et al., 2015), ADMM+ (Bianchi and
Hachem, 2014), DLM (Ling et al., 2015)

– Augmented Lagrangian Method (Wang and Elia, 2011; Gharesifard
and Cortes, 2014)

– Primal-Dual Method: EXTRA, PG-EXTRA (Shi et al., 2015a,b)

pros: no steady-state error; constant stepsize ⇒ O( 1
k

) or even O(λk)
cons: difficult to analyze for dynamic networks

6Refer to (Nedić et al., 2018) for a recent comprehensive survey
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Introduction

Objectives and Challenges

Objectives and Challenges

Objectives

– exact optimal solution
– fast convergence rates
– general networks

asynchronous
directed
...

Challenges

– varying topology
– asynchrony
– heterogeneity

uncoordinated stepsize
directed graph

Distributed
Optimization

PrivacyScalability

Computational
Complexity

H
eterogeneity

Va
ry

in
g 

To
po

lo
gy

Asynchronous
Implemntation
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Distributed Gradient Tracking Methods

Algorithm Development

Recalling the DSM algorithm for smooth functions7

xk+1 = Wxk︸ ︷︷ ︸
average consensus

− γg(xk)︸ ︷︷ ︸
gradient search

,

– where g(xk) := [∇f1(x1),∇f2(x2), ...,∇fm(xm)]T

Limit point analysis (W doubly stochastic ⇒ (I−W)1 = 0):

x∞ → θ1 ⇒ 0 = (W − I)x∞ = γg(x∞)6=0

– otherwise we have ∇fi (θ) = 0,∀i = 1, 2, ...,m

essentially not able to reach consensus!

7Here, we consider a constant stepsize for simplicity.
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Distributed Gradient Tracking Methods

Algorithm Development

Replacing with the ideal average of gradients

xk+1 = Wxk − γ��
��*

11T

m g(xk) = 1 1
m

∑
i ∇fi (xi ,k)

g(xk) ,

– where 11T

m := [ 1
m ] is the average matrix.

Limit point analysis (W doubly stochastic ⇒ (I−W)1 = 0):

x∞ → θ1 ⇒ 0 = (W− I)x∞ = γ
11T

m
g(x∞) ⇒ ∇F (θ) = 0

We are now able to reach consensus!

But 11T

m g(xk) not immediately available, how to obtain?
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Distributed Gradient Tracking Methods

Algorithm Development

Replacing with the pseudo average of gradients

xk+1 = Wxk − γ
��

�
��
�*

yk
11T

m
g(xk) ,

– where yk is the surrogate of the average of gradients.

Resorting to Dynamic Average Consensus:

yk+1 = Wyk + g(xk+1)− g(xk)

Average gradient tracking:

y0 = g(x0) ⇒ yi ,∞ =
1

m
1Tg(x∞), i ∈ V

– when k →∞, yk essentially tracks the average of gradients.
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Distributed Gradient Tracking Methods

Algorithm and Implementation

AugDGM Algorithm7

xk+1 = Wxk − γyk

yk+1 = Wyk + g(xk+1)− g(xk),

– yk is the auxiliary variable tracking the average of the gradients.

1 Initialization: ∀ agent i ∈ V: xi,0 randomly assigned; yi,0 = ∇fi (xi,0).

2 Local Optimization: ∀ agent i ∈ V, computes:

xi,k+1 =
∑
j∈Ni

wijxj,k − γ · yi,k

3 Dynamic Average Consensus: ∀ agent i ∈ V, computes:

yi,k+1 =
∑
j∈Ni

wijyj,k +∇fi (xi,k+1)−∇fi (xi,k)

4 Set k → k + 1 and go to Step 2.
7More general form can be found in (Xu et al., 2015)
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Convergence Analysis: Preliminary

Notations
– x?: the optimal solution

– x̄ = 11T

m
x (average), x̃ = (I− 11T

m
)x (disagreement)

– ρ: the spectral radius of a given matrix

Properties of cost functions
– µ-strongly convex:∥∥ψ(v)− ψ(v′)

∥∥ ≥ µ ∥∥v − v′
∥∥ , ∀v, v′ ∈ Rm

– L-smooth: ∥∥∇ψ(v)−∇ψ(v′)
∥∥ ≤ L

∥∥v − v′
∥∥ ,∀v, v′ ∈ Rm
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Convergence Analysis8

Assumptions
– Cost functions {fi}: µ-strongly convex, L-smooth
– Weight Matrix:

1TW = 1T , W1 = 1 and ρW := ρ
(

W − 11T

m

)
< 1

– There exists a solution to the problem

Theorem (Linear Rate for AugDGM)

Let {xk , yk}k≥0 be the iterates generated by AugDGM with y0 = g(x0).
Let κ = L/µ and suppose the above Assumptions hold. Then, if

γ <
(1− ρW )2

(1 +
√
κ+ 3)L

,

the residuals ‖x̄k − x?‖ and ‖x̃k‖ converge linearly to zero.

8Refer to (Xu et al., 2015, 2018b) for more details.
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

A Sensor Fusion Example

Overall loss function

F (θ) =
m∑
i=1

‖zi −Miθ‖2

– θ ∈ Rd : the unknown parameter
– Mi ∈ Rs×d : measurement matrix
– zi ∈ Rs : the observation of sensor i

Metropolis-Hastings protocol

wij =


1

max{di ,dj}
, if (i , j) ∈ E

1−
∑

j∈Ni
wij , if i = j

0, otherwise,

– di : the degree of node i .

A random network of 50 nodes
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Distributed Gradient Tracking Methods

Algorithm, Convergence and Performance

Performance Evaluation

Parameter Setting: d = 4, s = 1; Mi : a unit uniform distribution;

Gaussian Noise: N (0, 0.1)

200 400 600 800 1000 1200 1400 1600

10−20

10−15

10−10

10−5

100

Iterations

R
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id
ua

l (
lo

g)
AugDGM Vs DSM

 

 

DSM: γ=0.5/k1/2

DSM: γ=0.1
DSM: γ=0.2
AugDGM: γ=0.1
AugDGM: γ=0.2

Residual (res = ‖xk−x?‖2

‖x0−x?‖2 ) Vs. Iterations
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Distributed Gradient Tracking Methods

Extension to General Networks

Extension to Directed Networks

Extended to directed networks by graph splitting

GW ⇒ GR ⊕ GC

1

2

3

4

(a) GW

1

2

3

4

(b) GR

1

2

3

4

(c) GC

– R: Row-stochastic matrix; C: Column-stochastic matrix

Push-Pull Algorithm

xk+1 = Rxk − γyk

yk+1 = Cyk + g(xk+1)− g(xk),

– xk : the decision pulled from the neighbors for average consensus
– yk : the gradient pushed to the neighbors for gradient tracking.
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Distributed Gradient Tracking Methods

Extension to General Networks

Convergence Analysis

Assumptions
– Cost functions {fi}: µ-strongly convex, L-smooth
– The subgraph GR and GCT

9

each contains at least a spanning tree, i.e.,

ρR = ρ(R− 11T

m
) < 1, ρC = ρ(C− 11T

m
) < 1

have a common root, i.e., information flow is not blocked

– There exists a solution to the problem

Theorem (Linear Rate for Push-Pull)

Let {xk , yk}k≥0 be the iterates generated by Push-Pull with y0 = g(x0).
Let κ = L/µ and suppose the above Assumptions hold. Then, if

γ <
(1− ρR)(1− ρC )

φ(κ,R,C)L
,

the residuals ‖x̄k − x?‖ and ‖x̃k‖ converge linearly to zero.

9GCT = GC with edges reversed; Refer to (Pu et al., 2020) for more detials.
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Equivalent Primal-Dual Problems

Recalling the orginal DOP problem as follows

min
x∈Rm

f (x) =
m∑
i=1

fi (xi )

s.t. xi = xj , ∀i , j ∈ V

– x = [x1, x2, ...xm]T : the local estimates of agents.

Equivalent 10 to the (primal) optimal consensus problem

min
x∈Rm

f (x) =
m∑
i=1

fi (xi )

s.t. (I−W)x = 0,

(OCP)

– W: the weight matrix associated with the network

10If the graph is strongly connected such that null(I−W) = span(1).
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Equivalent Primal-Dual Problems

The Lagrange dual problem is depicted as follows

max
y′∈Rm

min
x∈Rm

{
f (x) + y′

T
(I−W)x

}
– y′ = [y ′1, y

′
2, ..., y

′
m]T : the Lagrange multiplier or dual variables.

Let y = (I−W)y′. The above problem becomes

max
y∈Rm

min
x∈Rm

{f (x) + 〈y, x〉} = max
y∈Rm

−f ∗(−y)

– f ∗: the convex conjugate of the function f .

1Ty = 1T (I−W)y′ = 0 ⇒ the (dual) optimal exchange problem

min
y∈Rm

f ∗(y) =
m∑
i=1

f ∗i (yi )

s.t. 1Ty = 0,

(OEP11)

– y = [y1, y2, ..., ym]T : the introduced dual variables.
11Refer to (Xu et al., 2018c) for more details.
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Algorithm and Implementation

ID-FBBS Algorithm12

xk+1 = Wxk − γ(g(xk) + yk)

yk+1 = yk +
1

γ
(I−W)xk+1,

– yk is the dual variable whose sum is maintained at zero.

1 Initialization: ∀ agent i ∈ V: xi,0 randomly assigned;
∑

i∈V yi,0 = 0.
2 Primal Update: ∀ agent i ∈ V, computes:

xi,k+1 =
∑
j∈Ni

wijxj,k − γ(gi (xi,k) + yi,k)

3 Dual Update: ∀ agent i ∈ V, computes:

yi,k+1 = yj,k +
1

γ

∑
j∈Ni

wij(xi,k+1 − xj,k+1)

4 Set k → k + 1 and go to Step 2.
12More general form can be found in (Xu et al., 2016)
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Algorithm, Convergence and Performance

Convergence Analysis

Assumptions

– Cost functions {fi}: L-smooth

– Weight Matrix: 1TW = 1T ,W1 = 1, ρ
(

W − 11T

m

)
< 1, and

W = WT ,W > 0
– There exists a saddle point to the OCP-OEP problem

Theorem (Sublinear rate for ID-FBBS)

Let {(xk , yk)}k≥0 be the iterates generated by ID-FBBS with 1Ty0 = 0.
Suppose the above Assumptions hold. Then, if

γ <
λmin(W)

L
,

it will converge to an optimal solution pair (x?, y?) where x? solves
the OCP problem while y? solves the OEP problem.

and converge at a rate13 of O( 1
k ).

13holds for non-smooth functions (Xu et al., 2018a); Linear rate (Shi et al., 2015a)
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Connections to Existing Algorithms

Connections to Existing Algorithms

Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(g(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

Setting y0 = 0, summing (b) and substituting into (a) yields

xk+1 = Wxk − γg(xk)︸ ︷︷ ︸
DSM

−
k∑

i=0

(I−W)xi︸ ︷︷ ︸
Correction

,

– equivalent16 to EXTRA with W = W̃ = I+W′

2
in x-update,

– W̃,W′ are two weight matrices of EXTRA (Shi et al., 2015a).

16Refer to (Xu et al., 2016, 2018a) for more details



When distributed optimization algorithms meet centralized ones and beyond (Online, Apr 2020) ©2020 Jinming Xu

Distributed Primal-Dual Methods
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Connections to Existing Algorithms

Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(g(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

Let γyk =
√

I−Wy′k , the above algorithm can be rewritten as

xk+1 = Wxk − γg(xk)−
√

I−Wy′k

y′k+1 = y′k +
√

I−Wxk+1

Equivalent to applying the Arrow-Hurwicz-Uzawa Method17{
xk+1 = xk − γ∇xL(x, y′k)

y′k+1 = y′k + γ∇y′L(xk+1, y
′)

– where L(x, y′) = f (x) + 1
γ

xT
√

I−Wy′ + 1
2γ

xT (I−W)x
17Refer to (Xu et al., 2016, 2018a) for more details
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Connections to Existing Algorithms

Connections to Existing Algorithms

Taking the augmented Lagrangian as follows:

L(x, y′) = f (x) +
1

γ
xT (I−W)y′ +

1

2γ
xT (I−W2)x,

Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = W2xk − γg(xk)− (I−W)y′k (c)

y′k+1 = y′k + (I−W)xk+1 (d)

Evaluating (c) at k + 1 and k , respectively and eliminating y′ using
(d), simple calculation gives

xk+2 −Wxk+1 = W(xk+1 −Wxk) + γ(g(xk+1)− g(xk))

Let γyk+1 = xk+2 −Wxk+1. Then, we recover

the original AugDGM

{
xk+1 = Wxk − γyk

yk+1 = Wyk + g(xk+1)− g(xk).
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A Unified Algorithm

A unified algorithm18

xk+1 = Axk − γBg(xk)− yk ,

yk+1 = yk + Cxk+1,

– where A,B,C are three weight matrices to be properly defined.

The above unified algorithm subsumes many existing algorithms.

Algorithm A B C

ID-FBBS/EXTRA 1
2
(I + W) I 1

2
(I−W)

NIDS/Exact Diffusion 1
2
(I + W) 1

2
(I + W) 1

2
(I−W)

AugDGM/NEXT W2 W2 (I−W)2

DIGing/Harnessing W2 I (I−W)2

18More general form can be found in (Xu et al., 2020b)
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General Convex and Smooth Case: Sublinear rate

Sublinear Convergence Rate

Let Sm be the set of m ×m symmetric matrices.

Assumptions

– Cost function {fi}: L-smooth;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, 0 � A � I− C,
iii) span(1) = null(C) ⊆ null(I− A).

Theorem (Sublinear rate for the unified algorithm)

Let {(xk , yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above hold. Then, if γ = min{ 1

L ,O(
√
η)}, the

algorithm converges at a sublinear rate of

max

{
L
∥∥x0 − x?

∥∥2

k + 1
,

1√
η(C)

∥∥x0 − x?
∥∥ ‖g(x?)‖

k + 1

}
,

where η(C) := λmin(C)
λmax(C)

denotes the eigengap of the matrix C.
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General Convex and Smooth Case: Sublinear rate

Some Observations

The convergence rate has the following structure19

max


L
∥∥x0 − x?

∥∥2

k + 1︸ ︷︷ ︸
computation

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖g(x?)‖

k + 1︸ ︷︷ ︸
communication


g(x?)=0⇒ O

(
L
∥∥x0 − x?

∥∥2

k + 1

)
︸ ︷︷ ︸

centralized rate

.

1/
√
η ≈ the diameter of the network for simple networks, e.g., line graphs

‖g(x?)‖ encodes the “heterogeneity” of functions; g(x?) = 0 implies

– Case 1: When all agents share common solution, e.g., the
distribution of all local data sets are similar.

– Case 2: When a spanning tree algorithm is employed, e.g,
exact average of local data, e.g., local gradients.

The algorithm reduces to the centralized one!

19Refer to (Xu et al., 2020a,b) for more details.
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Strongly Convex and Smooth Case: Linear rate

Linear Convergence Rate

Let Sm be the set of m ×m symmetric matrices.

Assumptions
– Cost function {fi}: L-smooth and µ-strongly convex;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, B2 � I− C,
iii) span(1) = null(C) ⊆ null(I− A).

Theorem (Linear rate for the unified algorithm)

Let {(xk , yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 2

L+µ , the

algorithm converges at a linear rate of O(σk) with

σ = max

{(
κ− 1

κ+ 1

)2

, 1− λmin(C)

}
,

where λmin(C) denotes the connectivity of the graph.
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Linear Convergence Rate
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)2
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,
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Strongly Convex and Smooth Case: Linear rate

Balancing Communication and Computation20

Set A = B = I− C = Wk and ρopt = κ−1
κ+1 , ρcom = ρ(W − 11T

m )

Connectivity of the Graph (ρcom)
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Perform similar as centralized counterparts
with finite number of inner consensus steps

20More details can be found in (Xu et al., 2020b)
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Summary

Proposed a class of distributed algorithms that work for fixed,
undirected or directed networks,

Showed their basic convergence and the relationships between
primal-only methods and primal-dual methods,

Provided a unified algorithmic framework and showed the
condition to achieving the “centralized” performance.
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Recommendation for future work

Communication and Computation Trade-offs

O(comm.) Vs. O(comp.)

– complexity, optimality, fundamental limits

Extension and Generalization

– constraints, general graphs, total asynchrony...

Security and Privacy

– robust and secure against malicious attacks
– protect the data in optimization process

Applications

– UAVs, Internet of Things, Artificial Intelligence...
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