Towards Scalable Algorithms for Distributed Optimization and Learning

César A. Uribe

Motivation

(a) Sensor Networks in Agriculture (b) (Mis)information Spread

(c) Camera Networks for Security

(d) Huge-scale ML

Characteristics and Challenges

- Characteristics
 - Many components/units (we call them agents).
 - Connected over networks.
 - Cyber and Physical interactions.
 - Distributed Storage.
- Challenges
 - Decentralization: distributed computations.
 - Scalability: Price of decentralization.
 - Optimality: Efficiency & Performance.

The Scalability Issue

Prototypical Problem: Risk Minimization

A general formulation of the learning problem, where, h_{θ} is some loss function.

$$\min_{\theta} R(h_{\theta}, P) \triangleq \mathbb{E}_{(X,Y) \sim P} \left[\ell(h_{\theta}(X), Y) \right]$$

However, in general we do not know the joint distribution *P*.

Empirical Risk Minimization

Assuming some finite number of data points m then we can solve the approximate problem assuming the empirical distribution.

$$\min_{\theta} R_m(h_{\theta}, \hat{P}) \triangleq \frac{1}{m} \sum_{i=1}^m \ell(h_{\theta}(x_i), y_i)$$

Distributed Average Consensus 101

- There is a network of *m* agents, i.e., a graph $\mathcal{G} = \{V, E\}$.
- Agent *i* holds an initial value $x_0^i \in \mathbb{R}$.
- Each agent needs to distributedly compute $\frac{1}{m} \sum_{i=1}^{m} x_0^i$.

Equivalently, solve
$$\min_{x \in \mathbb{R}} rac{1}{2} \sum\limits_{i=1}^m \|x - x_i\|_2^2$$

Enter the Consensus Algorithm

$$x_{k+1}^{i} = \sum_{j=1}^{m} [A]_{ij} x_{k}^{j}$$
(1)

FUNDAMENTAL RESULT: If \mathcal{G} is connected, undirected and static, and A is doubly stochastic, where $[A]_{ij} > 0$ iff $(j, i) \in E$. Then, the iterates generated by (1) have the following property:

$$\lim_{k \to \infty} x_k^i = \frac{1}{m} \sum_{j=1}^m x_0^j \qquad \forall i \in V.$$

An Example: Distributed Ridge Regression

We want to estimate x assuming

$$b_i = H_i x + noise,$$

where

H_i ∈ ℝ<sup>d_i×n: *d_i* data points of dimension *n*. *b_i* ∈ ℝ^{d_i}: *d_i* outputs.
</sup>

Today I'm going to talk about:

Õptimal Algorithms for (Distributed) Optimization

- CAU, S. Lee, A. Gasnikov, and A. Nedic, "A Dual Approach for Optimal Algorithms in Distributed Optimization over Networks," 2018
- A. Rogozin, CAU, A. Gasnikov, N. Malkovsky, and A. Nedic, "Optimal distributed convex optimization on slowly time-varying graphs," IEEE Transactions on Control of Network Systems, 2019
- A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, and CAU, "Optimal tensor methods in smooth convex and uniformly convex optimization," in COLT 2019.

CASE 1: Computational Optimal Transport

- CAU, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and A. Nedic, "Distributed computation of Wasserstein barycenters over networks," in IEEE Conference on Decision and Control, 2018.
- A. Kroshnin, N. Tupitsa, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and CAU, "On the complexity of approximating Wasserstein barycenters," in ICML 2019.
- P. Dvurechenskii, D. Dvinskikh, A. Gasnikov, CAU, and A. Nedić, "Decentralize and randomize: Faster algorithm for Wasserstein barycenters," Neurips 2018

CASE 2: Social Learning and Distributed Inference

- A. Nedic, A. Olshevsky, and CAU, "Fast Convergence Rates for Distributed Non-Bayesian Learning," IEEE Transactions on Automatic Control, 2017.
- A. Nedic, A. Olshevsky, and CAU, "Distributed learning for cooperative inference," 2017.
- J. Z. Hare, CAU, L. Kaplan, and A. Jadbabaie, "Non-Bayesian social learning with uncertain models," 2019

Oracle calls and complexity bounds

Consider the generic optimization problem

 $\min_{x \in \mathbb{R}^n} f(x),$

and assume that f is convex and

 $\|\nabla^p f(x) - \nabla^p f(y)\|_2 \le M_p \|x - y\|_2 \qquad \forall x, y \in \mathbb{R}^n.$

Calling the oracle: Query $\{f(x), \nabla f(x), \dots, \nabla^p f(x)\}$ at a certain point *x*.

Oracle complexity: For a given $\varepsilon > 0$, how many oracle calls are required to obtain a point \hat{x} such that

$$f(\hat{x}) - f^* \le \varepsilon,$$

where f^* is an optimal function value.

Oracle calls and complexity bounds

Consider the generic optimization problem

 $\min_{x \in \mathbb{R}^n} f(x),$

and assume that f is convex and

 $\|\nabla^p f(x) - \nabla^p f(y)\|_2 \le M_p \|x - y\|_2 \qquad \forall x, y \in \mathbb{R}^n.$

Calling the oracle: Query $\{f(x), \nabla f(x), \dots, \nabla^p f(x)\}$ at a certain point x.

Oracle complexity: For a given $\varepsilon > 0$, how many oracle calls are required to obtain a point \hat{x} such that

$$f(\hat{x}) - f^* \le \varepsilon,$$

where f^* is an optimal function value.

The complexity of solving *smooth* optimization problems

_	Lower Bound	Upper Bound		
p = 1	$\Omega\left(\left(\frac{M_1R^2}{\varepsilon}\right)^{\frac{1}{2}}\right)$	$O\left(\left(\frac{M_1R^2}{\varepsilon}\right)^{\frac{1}{2}}\right)$		
	[Nemirovski, Yudin (1983)]	[Nesterov (1983)]		
<i>p</i> = 2	$\Omega\left(\left(\frac{M_2R^3}{\varepsilon}\right)^{\frac{2}{7}}\right)$	$\widetilde{O}\left(\left(\frac{M_2R^3}{\varepsilon}\right)^{\frac{2}{7}}\right)$		
	[Arjevani et al. (2018)]	[Monteiro, Svaiter (2013)]		
$p \ge 3$	$\Omega\left(\left(\frac{M_{p}R^{p+1}}{\varepsilon}\right)^{\frac{2}{3p+1}}\right)$	$O\left(\left(\frac{M_p R^{p+1}}{\varepsilon}\right)^{\frac{1}{p+1}}\right)$		
	[Arjevani et al. (2018)]	[Baes (2009)]		
	[Nesterov (2018a)]	[Wibisono et al. (2016)]		
		[Nesterov, (2018a)]		
$p \ge 3$		$\widetilde{O}\left(\left(rac{M_{p}R^{p+1}}{\epsilon} ight)^{rac{2}{3p+1}} ight)$		
		[Gasnikov et al. (2019)]		

where
$$R = ||x_0 - x^*||_2^2$$
.

How to take into account the distributed information and the network architecture?

The Distributed Optimization Setup

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x)$$
 (2)

- Each node knows $f_i(x)$ (convex).
- Agents communicate over a graph $\mathcal{G} = (V, E)$.
- Agents *j* ∈ *V* shares information with *i* ∈ *V* if (*j*, *i*) ∈ *E*.

Objective: Solve (2) distributedly using local information only.

What does sharing information mean?

What does sharing information mean?

What does sharing information mean?

What does sharing information mean?

$$\begin{bmatrix} x_{k+1}^1 \\ x_{k+1}^2 \\ x_{k+1}^3 \\ x_{k+1}^4 \\ x_{k+1}^5 \\ x_{k+1}^{5} \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} & 0 & 0 & w_{1,5} \\ w_{1,1} & w_{2,2} & w_{2,3} & 0 & 0 \\ 0 & w_{3,2} & w_{3,3} & w_{3,4} & 0 \\ 0 & 0 & w_{4,3} & w_{4,4} & w_{4,5} \\ w_{5,1} & 0 & 0 & w_{5,4} & w_{5,5} \end{bmatrix} \begin{bmatrix} x_k^1 \\ x_k^2 \\ x_k^3 \\ x_k^4 \\ x_k^5 \end{bmatrix}$$

$$x_{k+1} = W x_k$$
, or $x_{k+1}^i = \sum_{i=1}^m w_{i,j} x_k^j$

where W has the sparsity pattern of the graph.

(Lack of) Optimality in Distributed Optimization

Local oracles: Agent *i* queries $\{f_i(x^i), \nabla f_i(x^i), \dots, \nabla^p f_i(x^i)\}$ at a certain point x^i only.

E.g., No agent has access to a full gradient $\sum_{i=1}^{m} \nabla f_i(x^i)$

Each agent runs a local algorithm only,

$$x_{k+1}^i = x_k^i - \alpha_i \nabla f_i(x_k^i)$$

Rule of thumb, distributed gradient descent [Nedić-Ozdaglar, 2009]

$$x_{k+1}^i = \sum_{j=1}^m w_{ij} x_k^j - \alpha_i \nabla f_i(x_k^i)$$

(Lack of) Optimality in Distributed Optimization

Local oracles: Agent *i* queries $\{f_i(x^i), \nabla f_i(x^i), \dots, \nabla^p f_i(x^i)\}$ at a certain point x^i only.

E.g., No agent has access to a full gradient $\sum_{i=1}^{m} \nabla f_i(x^i)$

Each agent runs a local algorithm only,

$$x_{k+1}^{i} = x_{k}^{i} - \alpha_{i} \nabla f_{i}(x_{k}^{i}), \qquad O\left(\varepsilon^{-1}\right)$$

Rule of thumb, distributed gradient descent [Nedić-Ozdaglar, 2009]

$$x_{k+1}^{i} = \sum_{j=1}^{m} w_{ij} x_{k}^{j} - \alpha_{i} \nabla f_{i}(x_{k}^{i}), \qquad O\left(\varepsilon^{-2}\right)$$

A map of Distributed Complexity Bounds

Approach	Reference	μ -strongly convex and L-smooth	μ -strongly convex	L-smooth	M-Lipschitz
Centralized	[Nemirovskii and Yudin, 1983]	$\sqrt{\frac{L}{\mu}}$	$\frac{M^2}{\mu \varepsilon}$	$\sqrt{\frac{L}{\varepsilon}}$	$\frac{M^2}{\varepsilon^2}$
	[Qu and Li, 2017] ^b	$m^3 \left(\frac{L}{\mu}\right)^{5/7}$	_	$\frac{1}{r^{5/7}}$	-
Gradient	[Olshevsky, 2014]	_	-	_	$m \frac{M^2}{\epsilon^2}$
Computations	[Duchi et al., 2012]	-	-	-	$m^2 \frac{M^2}{c^2}$
Computationic	[Doan and Olshevsky, 2017]	$m^2 \frac{L}{\mu}$	_	_	^c
	[Lakshmanan and De Farias, 2008]	_	_	$m^3 \frac{L}{\epsilon}$	_
	[Necoara, 2013]	$m^4 \frac{L}{\mu}$	-	$m^4 \frac{L}{\epsilon}$	-
	[Jakovetic, 2017] ^c	$m^2 \sqrt{\frac{L}{\mu}}$	-	-	-
Communication Rounds	[Scaman et al., 2017]	$m\sqrt{\frac{L}{\mu}}$	_	_	_
	[Lan et al., 2017]	_	$m^2 \sqrt{\frac{M^2}{\mu \epsilon}}$	-	$m^2 \frac{M}{\epsilon}$
	[Uribe et al. 2018]	$m\sqrt{rac{L}{\mu}}$	$m\sqrt{rac{M^2}{\muarepsilon}}$	$m\sqrt{rac{L}{arepsilon}}$	$m rac{M}{arepsilon}$

^b An iteration complexity of $\bar{O}(\sqrt{1/\varepsilon})$ is shown if the objective is the composition of a linear map and a strongly convex and smooth function. Moreover, no explicit dependence on L and m is provided.

 $^{\rm c}$ A linear dependence on m is achieved if L is sufficiently close to $\mu.$

Graph Laplacian

• $\sqrt{W}x = 0$ if and only if $x_1 = \ldots = x_m$.

Problem Reformulation

$$x = \begin{bmatrix} x_1 \in R^n \\ x_2 \in R^n \\ \vdots \\ x_m \in R^n \end{bmatrix}$$

Rewrite problem (2) in an equivalent form as follows:

$$\min_{\sqrt{W}x=0} F(x) \quad \text{where} \quad F(x) \triangleq \sum_{i=1}^{m} f_i(x_i), \quad (3)$$

where $W = \overline{W} \otimes I_n$.

The analysis tools

Initially, consider the general problem

$$\min_{4x=0} f(x). \tag{4}$$

We assume that the problem has optimal solutions. Later, we will derive the specific results when

$$A = \sqrt{W}$$
 and $f(x) = \sum_{i=1}^{m} f_i(x_i)$

Approximate Solution Definition A point $x \in \mathbb{R}^{mn}$ is said to be an $(\varepsilon, \tilde{\varepsilon})$ -solution of (9) if the following conditions are satisfied:

$$f(x) - f^* \le \varepsilon$$
 and $||Ax||_2 \le \tilde{\varepsilon}$,

where f^* denotes the optimal value of (9).

Construction of the dual problem

The Lagrangian dual for the problem in (9) is given by

$$\min_{Ax=0} f(x) = \max_{y} \left\{ \min_{x} \left\{ f(x) - \left\langle A^{T} y, x \right\rangle \right\} \right\},\$$

or equivalently

$$\min_{y} \varphi(y) \text{ where } \varphi(y) \triangleq \max_{x} \left\{ \left\langle A^{T} y, x \right\rangle - f(x) \right\},\$$

where $\nabla \varphi(y) = Ax^*(A^Ty)$ with

$$x^*(A^T y) = \operatorname*{arg\,max}_x \left\{ \left\langle A^T y, x \right\rangle - f(x) \right\}.$$

We say that f is **dual friendly** when we can determine a solution of the preceding problem efficiently (in a closed form ideally)

The duality of strong convexity and smoothness [Kakade et al., 2009]

- f(x) is μ -strongly convex $\iff \varphi(y)$ is L_{φ} -smooth with $L_{\varphi} = \lambda_{\max}(A^T A)/\mu$.
- f(x) is *L*-smooth $\iff \varphi(y)$ is μ_{φ} -strongly convex on the range space of *A* with $\mu_{\varphi} = \lambda_{\min}^+(A^TA)/L$.

The dual problem

$$\min_{y} \varphi(y) \text{ where } \varphi(y) \triangleq \max_{x} \left\{ \left\langle A^{T} y, x \right\rangle - f(x) \right\},\$$

may have multiple solutions of the form $y^* + \ker(A^T)$ when the matrix A does not have a full row rank. When the solution is not unique, we *will use* y^* *to denote the smallest norm solution*, and we let R be its norm, i.e. $R = ||y^*||_2$.

Remark

The dual problem

$$\min_{y} \varphi(y) \text{ where } \varphi(y) \triangleq \max_{x} \left\{ \left\langle A^{T} y, x \right\rangle - f(x) \right\},$$

is not strongly convex on the whole space.

Choosing $y_0 = \tilde{y}_0 = 0$ generates iterates that lie in the linear space of gradients $\nabla \varphi(y)$, which are of the form Ax.

The dual function $\varphi(y)$ is strongly convex when y is restricted to the linear space spanned by the range of the matrix A.

Nesterov's Fast Gradient Method (FGM) on the dual problem

Assume $\varphi(y)$ is μ -strongly convex and *L*-smooth.

$$x^*(A^T \tilde{y}_k) = \arg\max_{x} \left\{ \left\langle A^T \tilde{y}_k, x \right\rangle - f(x) \right\}$$
(5a)

$$y_{k+1} = \tilde{y}_k - \frac{1}{L_{\varphi}} A x^* (A^T \tilde{y}_k),$$
(5b)

$$\tilde{y}_{k+1} = y_{k+1} + \frac{\sqrt{L_{\varphi}} - \sqrt{\mu_{\varphi}}}{\sqrt{L_{\varphi}} + \sqrt{\mu_{\varphi}}} (y_{k+1} - y_k).$$
 (5c)

and

$$\varphi(y_k) - \varphi^* \le L_{\varphi} \left(1 - \sqrt{\frac{\mu_{\varphi}}{L_{\varphi}}} \right)^k \|y_0 - y^*\|_2^2, \tag{6}$$

Distributed Nesterov's Fast Gradient Method: DFGM

Set
$$A = \sqrt{W}$$
, $z_k = \sqrt{W}y_k$ and $\tilde{z}_k = \sqrt{W}\tilde{y}_k$

$$\begin{split} x_i^*(\tilde{z}_k^i) &= \arg\max_{x_i} \left\{ \left\langle \tilde{z}_k^i, x_i \right\rangle - f_i(x_i) \right\} \\ z_{k+1}^i &= \tilde{z}_k^i - \frac{\mu}{\lambda_{\max}(W)} \sum_{j=1}^m W_{ij} x_j^*(\tilde{z}_k^j) \\ \tilde{z}_{k+1}^i &= z_{k+1}^i + \frac{\sqrt{\lambda_{\max}(W)/\mu} - \sqrt{\lambda_{\min}^+(W)/L}}{\sqrt{\lambda_{\max}(W)/\mu} + \sqrt{\lambda_{\min}^+(W)/L}} (z_{k+1}^i - z_k^i) \end{split}$$
A summary of results from [Uribe et al. 2018]

Property of $F(x)$	Oracle calls
μ -strongly convex and L -smooth	$\tilde{O}\left(\sqrt{\frac{L}{\mu}\chi(W)}\right)$
$\mu\text{-strongly convex and }M\text{-Lipschitz}^*$	$\tilde{O}\left(\sqrt{\frac{M^2}{\mu\varepsilon}\chi(W)}\right)$
L-smooth	$\tilde{O}\left(\sqrt{\frac{LR_x^2}{\varepsilon}\chi(W)}\right)$
M-Lipschitz	$\tilde{O}\left(\sqrt{\frac{M^2 R_x^2}{\varepsilon^2}\chi(W)}\right)$

where $\chi(W) = \lambda_{\max}(W)/\lambda_{\min}^+(W)$. The worst case for fixed undirected graphs is $\chi(W) = O(m^2)$ [Olshevsky, 2014].

Challenges Moving Forward:

- A search for an universal algorithm: Typically, L, μ , R are unknown. Can we design an adaptive algorithm with optimal complexity with minimal information?
- Scalable algorithms for directed graph: The graph Laplacian is not symmetric, condition numbers can grow as $O(m^m)$ worst case.

 Closer to real-world networks: How to design optimal algorithms for stochastic, asynchronous, time-varying, capacity-constrained graphs.

Example: Distributed Computation of Wasserstein Barycenters

Now, what if each node holds a probability measure instead?

The Wasserstein Barycenters Problem:

Motivation 00000000000	Öptimal Algorithms	Computational Optimal Transport	Distributed Inference	Moving Forward	Extra 00000
		ICK			
	VI				

Motivation 00000000000	Optimal Algorithms	Computational Optimal Transport	Distributed Inference	Moving Forward	Extra 00000
		ICK			

 Motivation

 Õptimal Algorithms

 Computational Optimal Transport

 Distributed Inference

 Moving Forward

A toy problem for motivation

Information Exchange

Figure: Distributed Observations Centralized Decision Making

Figure: Distributed Observations, Distributed Decision Making

Motivation

 Õptimal AlgorithmsComputational Optimal TransportDistributed Inference

 oco

 oco

 oco

 oco

 oco

 oco

 coco

 c

Information Exchange

Figure: Distributed Observations Centralized Decision Making

Figure: Distributed Observations, Distributed Decision Making

Problem Setup: Agent's Observations

- *m* agents: $V = \{1, 2, \cdots, m\}$
- Agent i observes $X_k^i: \Omega \to \mathcal{X}^i, X_k^i \sim P^i$
- Agent *i* has an hypothesis set about P^i , $\{P^i_\theta\}$
- Probability distributions on Θ denoted as beliefs
- Agent *i* belief on hypothesis θ at time *k* denoted as $\mu_k^i(\theta)$

Agents want to collectively solve the following optimization problem

$$\min_{\theta \in \Theta} F(\theta) \triangleq D_{KL}\left(\boldsymbol{P} \| \boldsymbol{P}_{\theta}\right) = \sum_{i=1}^{m} D_{KL}(P^{i} \| P_{\theta}^{i}).$$
(7)

Consensus Learning: $d\mu^i_{\infty}(\theta^*) = 1$ for all *i*.

 Motivation

 Õptimal Algorithms
 Computational Optimal Transport

 Distributed Inference ococoecoco
 Moving Forward
 Extra

Geometric Interpretation for Finite Hypotheses

Informal Theorems from [Uribe et at. 2017]

Under appropriate assumptions, the agents execute the distributed learning algorithm. Given a parameter $\rho \in (0, 1)$, there is a time $N(m, \lambda, \rho)$ such that with probability $1 - \rho$ for all $k \ge N(m, \lambda, \rho)$ for all $\theta \notin \Theta^*$,

$$\mu_k^i\left(\theta\right) \leq \exp\left(-k\gamma_2 + \gamma_1\right) \quad \text{for all } i = 1, \dots, n,$$

$$\mu_{k+1}^{i}\left(\theta\right) \leq \exp\left(-k\gamma_{2}+\gamma_{1}\right) \quad \text{for all } i=1,\ldots,m.$$

Graph Class	N	γ_1	γ_2	δ
Time-Varying Undirected	$O(\log 1/\rho)$	$O(m^3 \log m)$	O(1)	
··· + Metropolis	$O(\log 1/\rho)$	$O(m^2\log m)$	O(1)	
Time-Varying Directed	$\left \frac{1}{\delta^2} O(\log 1/\rho) \right $	$O(m^m \log m)$	O(1)	$\delta \geq \tfrac{1}{m^m}$
\cdots + regular	$O(\log 1/\rho)$	$O(m^3\log m)$	O(1)	1
Fixed Undirected	$O(\log 1/ ho)$	$O(m\log m)$	O(1)	

Distributed Source Localization

Challenges Moving Forward: Data-Driven Distributed Inference

- Efficient belief communications: How to communicate beliefs in when the number of hypothesis is large (maybe uncountably many)?
- Non-parametric distributed learning: How to define beliefs in non-parametric spaces? how to learn?
- **Distributed online learning and filtering:** Design "correct by definition" distributed algorithms for filtering and learning, e.g., what is the correct formulation of distributed Kalman filter?

Towards Scalable Algorithms for Distributed Optimization and Learning

César A. Uribe

The Entropy-Regularized 2-Wasserstein Barycenter Problem: Discrete Distributions

$$\min_{p \in S_1(n)} \sum_{i=1}^m \mathcal{W}_{\gamma}(p, q_i).$$

$$\mathcal{W}_{\gamma}(p,q) \triangleq \min_{X \in U(p,q)} \left\{ \langle M, X \rangle - \gamma E(X) \right\},$$

$$[M]_{ij} = ||x_i - x_j||_2^2, \qquad \langle M, X \rangle \triangleq \sum_{i=1}^n \sum_{j=1}^n M_{ij} X_{ij},$$

$$E(X) \triangleq -\sum_{i=1}^{n} \sum_{j=1}^{n} h(X_{ij}),$$
$$U(p,q) \triangleq \left\{ X \in \mathbb{R}^{n \times n}_{+} \mid X\mathbf{1} = p, X^{T}\mathbf{1} = q \right\}.$$
where $\gamma > 0$, and $h(x) \triangleq x \log x$.

A Dual Approach based on the Graph Laplacian

Example: Estimating the Mean of a Gaussian Model

Data: Assume we receive a sample x_1, \ldots, x_k , where $X_k \sim \mathcal{N}(\theta^*, \sigma^2)$. σ^2 is known and we want to estimate θ^* .

Model: The collection of all Normal distributions with variance σ^2 , i.e. $\mathscr{P}_{\theta} = \{\mathcal{N}(\theta, \sigma^2)\}.$

Prior: Our prior is the standard Normal distribution $d\mu_0(\theta) = \mathcal{N}(0, 1)$.

Posterior: The posterior is defined as

$$d\mu_k(\theta) \propto d\mu_0(\theta) \prod_{t=1}^k p_\theta(x_t)$$
$$= \mathcal{N}\left(\frac{\sum_{t=1}^k x_t}{\sigma^2 + k}, \frac{\sigma^2}{\sigma^2 + k}\right)$$

Problem Reformulation

$$x = \begin{bmatrix} x_1 \in \mathbb{R}^n \\ x_2 \in \mathbb{R}^n \\ \vdots \\ x_m \in \mathbb{R}^n \end{bmatrix}$$

Rewrite problem (2) in an equivalent form as follows:

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x) \qquad \text{equivalent to} \qquad \min_{Wx=0} \sum_{i=1}^m f_i(x_i), \quad (8)$$

where $W = \overline{W} \otimes I_n$.

Some analysis tools

Initially, consider the general problem

$$\min_{4x=0} f(x). \tag{9}$$

We assume that the problem has optimal solutions. Later, we will derive the specific results when

$$A = \sqrt{W}$$
 and $f(x) = \sum_{i=1}^{m} f_i(x_i)$

Approximate Solution Definition A point $x \in \mathbb{R}^{mn}$ is said to be an $(\varepsilon, \tilde{\varepsilon})$ -solution of (9) if the following conditions are satisfied:

$$f(x) - f^* \le \varepsilon$$
 and $||Ax||_2 \le \tilde{\varepsilon}$,

where f^* denotes the optimal value of (9).

Construction of the dual problem

The Lagrangian dual for the problem in (9) is given by

$$\min_{Ax=0} f(x) = \max_{y} \left\{ \min_{x} \left\{ f(x) - \left\langle A^{T} y, x \right\rangle \right\} \right\},\$$

or equivalently

$$\min_{y} \varphi(y) \text{ where } \varphi(y) \triangleq \max_{x} \left\{ \left\langle A^{T} y, x \right\rangle - f(x) \right\},\$$

where $\nabla \varphi(y) = Ax^*(A^Ty)$ (Demyanov-Danskin) with

$$x^*(A^T y) = \arg\max_{x} \left\{ \left\langle A^T y, x \right\rangle - f(x) \right\}.$$

We say that f is **dual friendly** when we can determine a solution of the preceding problem efficiently (in a closed form ideally)

The duality of strong convexity and smoothness, [Kakade et al., 2009] and others

- f(x) is μ -strongly convex $\iff \varphi(y)$ is L_{φ} -smooth with $L_{\varphi} = \lambda_{\max}(A^T A)/\mu$.
- f(x) is *L*-smooth $\iff \varphi(y)$ is μ_{φ} -strongly convex on the range space of *A* with $\mu_{\varphi} = \lambda_{\min}^+(A^T A)/L$.

The dual problem $\min_y \varphi(y)$ may have multiple solutions of the form $y^* + \ker(A^T)$.

Informally: If f(x) has condition number $\frac{L}{\mu}$. Then, $\varphi(y)$ has condition number $\frac{\lambda_{\max}(A^TA)}{\lambda_{\min}^+(A^TA)} \frac{L}{\mu}$

A proof sketch

Lets recall Nesterov's fast gradient method for

$$\min_{y}\varphi(y) \tag{10}$$

$$y_{k+1} = \tilde{y}_k - \frac{1}{L_{\varphi}} \nabla \varphi(\tilde{y}_k), \qquad (11a)$$

$$\tilde{y}_{k+1} = y_{k+1} + \frac{\sqrt{L_{\varphi}} - \sqrt{\mu_{\varphi}}}{\sqrt{L} + \sqrt{\mu_{\varphi}}} (y_{k+1} - y_k).$$
(11b)

and

$$\varphi(y_k) - \varphi^* \le L_{\varphi} \left(1 - \sqrt{\frac{\mu_{\varphi}}{L_{\varphi}}} \right)^k \|y_0 - y^*\|_2^2,$$
(12)
A proof sketch

Lets recall Nesterov's fast gradient method for

$$\min_{y}\varphi(y) \tag{10}$$

$$x^*(A^T \tilde{y}_k) = \operatorname*{arg\,max}_x \left\{ \left\langle A^T \tilde{y}_k, x \right\rangle - f(x) \right\}$$
(11a)

$$y_{k+1} = \tilde{y}_k - \frac{1}{L_{\varphi}} A x^* (A^T \tilde{y}_k), \qquad (11b)$$

$$\tilde{y}_{k+1} = y_{k+1} + \frac{\sqrt{L_{\varphi}} - \sqrt{\mu_{\varphi}}}{\sqrt{L_{\varphi}} + \sqrt{\mu_{\varphi}}} (y_{k+1} - y_k).$$
(11c)

and

$$\varphi(y_k) - \varphi^* \le L_{\varphi} \left(1 - \sqrt{\frac{\mu_{\varphi}}{L_{\varphi}}} \right)^k \|y_0 - y^*\|_2^2, \tag{12}$$

What do agents do locally?

Set
$$A = \sqrt{W}$$
, $z_k = \sqrt{W}y_k$ and $\tilde{z}_k = \sqrt{W}\tilde{y}_k$

$$\begin{aligned} x_i^*(\tilde{z}_k^i) &= \arg\max_{x_i} \left\{ \left\langle \tilde{z}_k^i, x_i \right\rangle - f_i(x_i) \right\} \\ z_{k+1}^i &= \tilde{z}_k^i - \frac{\mu}{\lambda_{\max}(W)} \sum_{j=1}^m W_{ij} x_j^*(\tilde{z}_k^j) \\ \tilde{z}_{k+1}^i &= z_{k+1}^i + \frac{\sqrt{\lambda_{\max}(W)/\mu} - \sqrt{\lambda_{\min}^+(W)/L}}{\sqrt{\lambda_{\max}(W)/\mu} + \sqrt{\lambda_{\min}^+(W)/L}} (z_{k+1}^i - z_k^i) \end{aligned}$$