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Motivation

(a) Sensor Networks in Agriculture (b) (Mis)information Spread

(c) Camera Networks for Security (d) Huge-scale ML
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Characteristics and Challenges

Characteristics
Many components/units (we call them agents).
Connected over networks.
Cyber and Physical interactions.
Distributed Storage.

Challenges
Decentralization: distributed computations.
Scalability: Price of decentralization.
Optimality: Efficiency & Performance.
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The Scalability Issue
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The abstraction model

min
x∈Rn

m∑
i=1

fi(x)
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The abstraction model

min
x∈Rn

m∑
i=1

fi( x︸︷︷︸
decision

)
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The abstraction model

min
x∈Rn

m∑
i=1

cost of agent i︷︸︸︷
fi(x)
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The abstraction model

min
x∈Rn

m∑
i=1

fi(x)︸ ︷︷ ︸
total cost
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The abstraction model

min
x∈Rn

m∑
i=1

fi(x)︸ ︷︷ ︸
make the best decision
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Prototypical Problem: Risk Minimization

A general formulation of the learning problem, where, hθ is
some loss function.

min
θ

R(hθ, P ) ≜ E(X,Y )∼P [ℓ(hθ(X), Y )]

However, in general we do not know the joint distribution P .



Motivation Õptimal Algorithms Computational Optimal Transport Distributed Inference Moving Forward Extra

Empirical Risk Minimization

Assuming some finite number of data points m then we can
solve the approximate problem assuming the empirical
distribution.

min
θ

Rm(hθ, P̂ ) ≜
1

m

m∑
i=1

ℓ(hθ(xi), yi)
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Distributed Average Consensus 101

There is a network of m agents, i.e., a graph G = {V,E}.
Agent i holds an initial value xi0 ∈ R.
Each agent needs to distributedly compute 1

m

∑m
i=1 x

i
0.

2

5

8

9

Equivalently, solve minx∈R
1
2

m∑
i=1

∥x− xi∥22
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Enter the Consensus Algorithm

xik+1 =

m∑
j=1

[A]ijx
j
k (1)

FUNDAMENTAL RESULT: If G is connected, undirected and
static, and A is doubly stochastic, where [A]ij > 0 iff (j, i) ∈ E.
Then, the iterates generated by (1) have the following property:

lim
k→∞

xik =
1

m

m∑
j=1

xj0 ∀i ∈ V.
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An Example: Distributed Ridge Regression
We want to estimate x assuming

bi = Hix+ noise,

where
Hi ∈ Rdi×n: di data points of dimension n.
bi ∈ Rdi : di outputs.

(b1, H1)

(b2, H2)

(b3, H3)

(bm, Hm)

min
x

1

2

1

m

m∑
i=1

∥bi −Hix∥22.
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Today I’m going to talk about:
Õptimal Algorithms for (Distributed) Optimization

CAU, S. Lee, A. Gasnikov, and A. Nedic, “A Dual Approach for Optimal Algorithms in Distributed
Optimization over Networks,” 2018

A. Rogozin, CAU, A. Gasnikov, N. Malkovsky, and A. Nedic, “Optimal distributed convex optimization on
slowly time-varying graphs,” IEEE Transactions on Control of Network Systems, 2019

A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Selikhanovych, and CAU, “Optimal tensor
methods in smooth convex and uniformly convex optimization,” in COLT 2019.

CASE 1: Computational Optimal Transport
CAU, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and A. Nedic, “Distributed computation of Wasserstein
barycenters over networks,” in IEEE Conference on Decision and Control, 2018.

A. Kroshnin, N. Tupitsa, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and CAU, “On the complexity of
approximating Wasserstein barycenters,” in ICML 2019.

P. Dvurechenskii, D. Dvinskikh, A. Gasnikov, CAU, and A. Nedić, “Decentralize and randomize: Faster
algorithm for Wasserstein barycenters,” Neurips 2018

CASE 2: Social Learning and Distributed Inference
A. Nedic, A. Olshevsky, and CAU, “Fast Convergence Rates for Distributed Non-Bayesian Learning,” IEEE
Transactions on Automatic Control, 2017.

A. Nedic, A. Olshevsky, and CAU, “Distributed learning for cooperative inference,” 2017.

J. Z. Hare, CAU, L. Kaplan, and A. Jadbabaie, “Non-Bayesian social learning with uncertain models,” 2019
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Oracle calls and complexity bounds
Consider the generic optimization problem

min
x∈Rn

f(x),

and assume that f is convex and

∥∇pf(x)−∇pf(y)∥2 ≤ Mp∥x− y∥2 ∀x, y ∈ Rn.

Calling the oracle: Query {f(x),∇f(x), . . . ,∇pf(x)} at a
certain point x.

Oracle complexity: For a given ε > 0, how many oracle calls
are required to obtain a point x̂ such that

f(x̂)− f∗ ≤ ε,

where f∗ is an optimal function value.
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The complexity of solving smooth
optimization problems

where R = ∥x0 − x∗∥22.
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How to take into account the distributed
information and the network architecture?
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The Distributed Optimization Setup

f1(x)

f2(x)

f3(x)

fm(x)

min
x∈Rn

m∑
i=1

fi(x) (2)

Each node knows fi(x) (convex).
Agents communicate over a
graph G = (V,E).
Agents j ∈ V shares information
with i ∈ V if (j, i) ∈ E.

Objective: Solve (2) distributedly
using local information only.
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What does sharing information mean?

1

4 3

5 2

(x1k)

(x2k)(x5k)

(x3k)(x4k)
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What does sharing information mean?
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What does sharing information mean?

1

4 3

5 2
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What does sharing information mean?


x1k+1

x2k+1

x3k+1

x4k+1

x5k+1

 =


w1,1 w1,2 0 0 w1,5

w1,1 w2,2 w2,3 0 0
0 w3,2 w3,3 w3,4 0
0 0 w4,3 w4,4 w4,5

w5,1 0 0 w5,4 w5,5




x1k
x2k
x3k
x4k
x5k



xk+1 = Wxk, or xik+1 =

m∑
i=1

wi,jx
j
k

where W has the sparsity pattern of the graph.
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(Lack of) Optimality in Distributed
Optimization

Local oracles: Agent i queries {fi(xi),∇fi(x
i), . . . ,∇pfi(x

i)}
at a certain point xi only.

E.g., No agent has access to a full gradient
∑m

i=1∇fi(x
i)

1 Each agent runs a local algorithm only,

xik+1 = xik − αi∇fi(x
i
k)

2 Rule of thumb, distributed gradient descent
[Nedić-Ozdaglar, 2009]

xik+1 =

m∑
j=1

wijx
j
k − αi∇fi(x

i
k)
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(Lack of) Optimality in Distributed
Optimization

Local oracles: Agent i queries {fi(xi),∇fi(x
i), . . . ,∇pfi(x

i)}
at a certain point xi only.

E.g., No agent has access to a full gradient
∑m

i=1∇fi(x
i)

1 Each agent runs a local algorithm only,

xik+1 = xik − αi∇fi(x
i
k), O

(
ε−1
)

2 Rule of thumb, distributed gradient descent
[Nedić-Ozdaglar, 2009]

xik+1 =

m∑
j=1

wijx
j
k − αi∇fi(x

i
k), O

(
ε−2
)
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A map of Distributed Complexity Bounds

Approach Reference
µ-strongly

convex and
L-smooth

µ-strongly
convex L-smooth

M -Lipschitz

Centralized [Nemirovskii and Yudin, 1983]
√

L
µ

M2

µε

√
L
ε

M2

ε2

Gradient
Computations

[Qu and Li, 2017]b m3
(
L
µ

)5/7 − 1
ε5/7

−
[Olshevsky, 2014] − − − mM2

ε2

[Duchi et al., 2012] − − − m2M2

ε2

[Doan and Olshevsky, 2017] m2L
µ − − −

[Lakshmanan and De Farias, 2008] − − m3L
ε −

[Necoara, 2013] m4L
µ − m4L

ε −
[Jakovetic, 2017]c m2

√
L
µ − − −

Communication
Rounds

[Scaman et al., 2017] m
√

L
µ − − −

[Lan et al., 2017] − m2
√

M2

µε − m2M
ε

[Uribe et al. 2018] m
√

L
µ

m
√

M2

µε
m
√

L
ε

mM
ε

b An iteration complexity of Õ(
√

1/ε) is shown if the objective is the composition of a linear map and a strongly convex
and smooth function. Moreover, no explicit dependence on L and m is provided.
c A linear dependence on m is achieved if L is sufficiently close to µ.
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Graph Laplacian

1

4 3

5 2
W̄ =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 .

Note that:
Wx = 0 if and only if x1 = . . . = xm.√
Wx = 0 if and only if x1 = . . . = xm.
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Problem Reformulation

x =


x1 ∈ Rn

x2 ∈ Rn

...
xm ∈ Rn


Rewrite problem (2) in an equivalent form as follows:

min√
Wx=0

F (x) where F (x) ≜
m∑
i=1

fi(xi), (3)

where W = W̄ ⊗ In.
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The analysis tools

Initially, consider the general problem

min
Ax=0

f(x). (4)

We assume that the problem has optimal solutions.
Later, we will derive the specific results when

A =
√
W and f(x) =

m∑
i=1

fi(xi)

Approximate Solution Definition A point x ∈ Rmn is said to be
an (ε, ε̃)-solution of (9) if the following conditions are satisfied:

f(x)− f∗ ≤ ε and ∥Ax∥2 ≤ ε̃,

where f∗ denotes the optimal value of (9).
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Construction of the dual problem

The Lagrangian dual for the problem in (9) is given by

min
Ax=0

f(x) = max
y

{
min
x

{
f(x)−

〈
AT y, x

〉}}
,

or equivalently

min
y

φ(y) where φ(y) ≜ max
x

{〈
AT y, x

〉
− f(x)

}
,

where ∇φ(y) = Ax∗(AT y) with

x∗(AT y) = argmax
x

{〈
AT y, x

〉
− f(x)

}
.

We say that f is dual friendly when we can determine a
solution of the preceding problem efficiently (in a closed form
ideally)
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The duality of strong convexity and
smoothness [Kakade et al., 2009]

f(x) is µ-strongly convex ⇐⇒ φ(y) is Lφ-smooth with
Lφ = λmax(A

TA)/µ.

f(x) is L-smooth ⇐⇒ φ(y) is µφ-strongly convex on the
range space of A with µφ = λ+

min(A
TA)/L.

The dual problem

min
y

φ(y) where φ(y) ≜ max
x

{〈
AT y, x

〉
− f(x)

}
,

may have multiple solutions of the form y∗ + ker(AT ) when the
matrix A does not have a full row rank. When the solution is not
unique, we will use y∗ to denote the smallest norm solution,
and we let R be its norm, i.e. R = ∥y∗∥2.
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Remark

The dual problem

min
y

φ(y) where φ(y) ≜ max
x

{〈
AT y, x

〉
− f(x)

}
,

is not strongly convex on the whole space.

Choosing y0 = ỹ0 = 0 generates iterates that lie in the linear
space of gradients ∇φ(y), which are of the form Ax.

The dual function φ(y) is strongly convex when y is restricted to
the linear space spanned by the range of the matrix A.
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Nesterov’s Fast Gradient Method (FGM) on
the dual problem

Assume φ(y) is µ-strongly convex and L-smooth.

x∗(AT ỹk) = argmax
x

{〈
AT ỹk, x

〉
− f(x)

}
(5a)

yk+1 = ỹk −
1

Lφ
Ax∗(AT ỹk), (5b)

ỹk+1 = yk+1 +

√
Lφ −

√
µφ√

Lφ +
√

µφ

(yk+1 − yk). (5c)

and

φ(yk)− φ∗ ≤ Lφ

(
1−

√
µφ

Lφ

)k

∥y0 − y∗∥22, (6)
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Distributed Nesterov’s Fast Gradient
Method: DFGM

Set A =
√
W , zk =

√
Wyk and z̃k =

√
Wỹk

x∗i (z̃
i
k) = argmax

xi

{〈
z̃ik, xi

〉
− fi(xi)

}
zik+1 = z̃ik −

µ

λmax(W )

m∑
j=1

Wijx
∗
j (z̃

j
k)

z̃ik+1 = zik+1 +

√
λmax(W )/µ−

√
λ+
min(W )/L√

λmax(W )/µ+
√
λ+
min(W )/L

(zik+1 − zik)



Motivation Õptimal Algorithms Computational Optimal Transport Distributed Inference Moving Forward Extra

A summary of results from [Uribe et al. 2018]

Property of F (x) Oracle calls

µ-strongly convex and L-smooth Õ
(√

L
µχ(W )

)
µ-strongly convex and M -Lipschitz∗ Õ

(√
M2

µε χ(W )
)

L-smooth Õ

(√
LR2

x
ε χ(W )

)
M -Lipschitz Õ

(√
M2R2

x
ε2

χ(W )

)
where χ(W ) = λmax(W )/λ+

min(W ).
The worst case for fixed undirected graphs is χ(W ) = O(m2)
[Olshevsky, 2014].
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Challenges Moving Forward:

A search for an universal algorithm: Typically, L, µ, R
are unknown. Can we design an adaptive algorithm with
optimal complexity with minimal information?
Scalable algorithms for directed graph: The graph
Laplacian is not symmetric, condition numbers can grow as
O(mm) worst case.

Closer to real-world networks: How to design optimal
algorithms for stochastic, asynchronous, time-varying,
capacity-constrained graphs.
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Example: Distributed Computation of
Wasserstein Barycenters

Now, what if each node holds a probability measure instead?

q1

q2

qi

qn

min
p∈S1(n)

m∑
i=1

Wγ(p, qi).

link
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The Wasserstein Barycenters Problem:

Wasserstein
Mean

Euclidean
Mean
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A toy problem for motivation
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k = 0

θ0 θ∗
Θ

dµk(·)
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k = 1

θ0 θ∗
Θ

dµk(·)
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k = 2

θ0 θ∗
Θ

dµk(·)
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k = 3

θ0 θ∗
Θ

dµk(·)
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k = 4

θ0 θ∗
Θ

dµk(·)
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k = 5

θ0 θ∗
Θ

dµk(·)
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k = 6

θ0 θ∗
Θ

dµk(·)
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Information Exchange
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Problem Setup: Agent’s Observations

m agents: V = {1, 2, · · · ,m}
Agent i observes Xi

k : Ω → X i, Xi
k ∼ P i

Agent i has an hypothesis set about P i, {P i
θ}

Probability distributions on Θ denoted as beliefs
Agent i belief on hypothesis θ at time k denoted as µi

k (θ)

Agents want to collectively solve the following optimization
problem

min
θ∈Θ

F (θ) ≜ DKL (P ∥P θ) =

m∑
i=1

DKL(P
i∥P i

θ). (7)

Consensus Learning: dµi
∞ (θ∗) = 1 for all i.
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Geometric Interpretation for Finite
Hypotheses

P

P θ3

P θ1

P θ2



Motivation Õptimal Algorithms Computational Optimal Transport Distributed Inference Moving Forward Extra

Informal Theorems from [Uribe et at. 2017]

YYN

µi
k+1(θ) ≤ exp(−kγ2 + γ1)

Under appropriate assumptions, the agents execute the
distributed learning algorithm. Given a parameter ρ ∈ (0, 1),
there is a time N(m,λ, ρ) such that with probability 1− ρ for all
k ≥ N(m,λ, ρ) for all θ /∈ Θ∗,

µi
k (θ) ≤ exp (−kγ2 + γ1) for all i = 1, . . . , n,
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µi
k+1 (θ) ≤ exp (−kγ2 + γ1) for all i = 1, . . . ,m.

Graph Class N γ1 γ2 δ

Time-Varying
O(log 1/ρ) O(m3 logm) O(1)

Undirected

· · · + Metropolis O(log 1/ρ) O(m2 logm) O(1)

Time-Varying 1
δ2
O(log 1/ρ) O(mm logm) O(1) δ ≥ 1

mmDirected

· · · + regular O(log 1/ρ) O(m3 logm) O(1) 1

Fixed
O(log 1/ρ) O(m logm) O(1)

Undirected
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Distributed Source Localization
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Challenges Moving Forward:
Data-Driven Distributed Inference

Efficient belief communications: How to communicate
beliefs in when the number of hypothesis is large (maybe
uncountably many)?
Non-parametric distributed learning: How to define
beliefs in non-parametric spaces? how to learn?
Distributed online learning and filtering: Design “correct
by definition” distributed algorithms for filtering and
learning, e.g., what is the correct formulation of distributed
Kalman filter?
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Going Back to the Big Picture

min
x∈Rn

m∑
i=1

fi(x)

Optimization
Problem

Network
of Agents

f1(x)

f2(x)
f3(x)

f4(x)

fm(x)

DISTRIBUTED 
SECOND-ORDER

METHOD

[ICML’20]

DISTRIBUTED 
SECOND-ORDER

METHOD

[ICML’20]

UNCERTAIN 
MODELS

OPTIMAL
DISTRIBUTED
ALGORITHMS

[OMS’19]
OPTIMAL

DISTRIBUTED
ALGORITHMS

[OMS’19]

GRAPH-THEORY 
FOR 

BELIEF SYSTEMS

ROBUSTNESS &
RESILIENCY

TIME-VARYING 
DIRECTED 
GRAPHS

UNCOUNTABLE 
HYPOTHESES

TIME-VARYING 
GRAPHS

STOCHASTIC
ORACLES

ODE 
DISCRETIZATION
AND ALGORITHM

DESIGN

DECENTRALIZED 
CONTROL

SIGNALINGPOWER 
SYSTEMS

[CDC’18]

[CDC’19]
[TCNS’19]

[CDC’19]

[ACC’19]

[TCNS’19]

[TSP’19]

OPTIMAL
HIGH-ORDER 

METHODS
[COLT’19]
[ICML’20]

OPTIMAL
HIGH-ORDER 

METHODS
[COLT’19]
[ICML’20]

[NecSys’18]
[CDC’13]
[ACC’14]

[TInfoTh’19]

[ACC’16]
[Asilomar’16][Scientific

Reports’19]

INCREASING
SELF-

CONFIDENCE

[ACC’19]

DECENTRALIZED SCALABLE OPTIMAL

DISCRETE &
GAUSSIAN 
MODELS

[CDC’19]
[ACC’20]

COOPERATIVE 
LEARNING &
INFERENCE

OPTIMIZATION
THEORY

SEMI-DISCRETE
FORMULATION

[NeurIPS’18]

 COMPLEXITY
WASSERSTEIN
BARYCENTERS

[ICML’19]
[MOTOR’19]

SCALABLE
FAST RATES

[TAC’17]
[ACC’15]
[CDC’16]

SCALABLE
FAST RATES

[TAC’17]
[ACC’15]
[CDC’16]

DISTRIBUTED
COMPUTATION

EFFICIENT
COMMUNICATIONS

[ICASSP’20]

EFFICIENT
COMMUNICATIONS

[ICASSP’20]

MALICIOUS 
AGENTS

[FUSION’19]MALICIOUS 
AGENTS

[FUSION’19]

COMPUTATIONAL 
OPTIMAL 

TRANSPORT
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Towards Scalable
Algorithms for Distributed

Optimization and Learning

César A. Uribe
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The Entropy-Regularized 2-Wasserstein
Barycenter Problem: Discrete Distributions

min
p∈S1(n)

m∑
i=1

Wγ(p, qi).

Wγ(p, q) ≜ min
X∈U(p,q)

{⟨M,X⟩ − γE(X)} ,

[M ]ij = ∥xi − xj∥22, ⟨M,X⟩ ≜
n∑

i=1

n∑
j=1

MijXij ,

E(X) ≜ −
n∑

i=1

n∑
j=1

h(Xij),

U(p, q) ≜
{
X ∈ Rn×n

+ | X1 = p,XT1 = q
}
.

where γ > 0, and h(x) ≜ x log x.
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A Dual Approach based on the Graph
Laplacian

1

4 3

5 2

W̄ =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 .

Note that:
Wx = 0 if and only if x1 = . . . = xm.
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Example: Estimating the Mean of a Gaussian
Model
Data: Assume we receive a sample x1, . . . , xk, where
Xk ∼ N (θ∗, σ2). σ2 is known and we want to estimate θ∗.

Model: The collection of all Normal distributions with
variance σ2, i.e. Pθ = {N (θ, σ2)}.

Prior: Our prior is the standard Normal distribution
dµ0(θ) = N (0, 1).

Posterior: The posterior is defined as

dµk(θ) ∝ dµ0(θ)

k∏
t=1

pθ(xt)

= N

(∑k
t=1 xt

σ2 + k
,

σ2

σ2 + k

)



Motivation Õptimal Algorithms Computational Optimal Transport Distributed Inference Moving Forward Extra

Problem Reformulation

x =


x1 ∈ Rn

x2 ∈ Rn

...
xm ∈ Rn


Rewrite problem (2) in an equivalent form as follows:

min
x∈Rn

m∑
i=1

fi(x) equivalent to min
Wx=0

m∑
i=1

fi(xi), (8)

where W = W̄ ⊗ In.
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Some analysis tools

Initially, consider the general problem

min
Ax=0

f(x). (9)

We assume that the problem has optimal solutions.
Later, we will derive the specific results when

A =
√
W and f(x) =

m∑
i=1

fi(xi)

Approximate Solution Definition A point x ∈ Rmn is said to be
an (ε, ε̃)-solution of (9) if the following conditions are satisfied:

f(x)− f∗ ≤ ε and ∥Ax∥2 ≤ ε̃,

where f∗ denotes the optimal value of (9).
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Construction of the dual problem

The Lagrangian dual for the problem in (9) is given by

min
Ax=0

f(x) = max
y

{
min
x

{
f(x)−

〈
AT y, x

〉}}
,

or equivalently

min
y

φ(y) where φ(y) ≜ max
x

{〈
AT y, x

〉
− f(x)

}
,

where ∇φ(y) = Ax∗(AT y) (Demyanov-Danskin) with

x∗(AT y) = argmax
x

{〈
AT y, x

〉
− f(x)

}
.

We say that f is dual friendly when we can determine a
solution of the preceding problem efficiently (in a closed form
ideally)
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The duality of strong convexity and
smoothness, [Kakade et al., 2009] and others

f(x) is µ-strongly convex ⇐⇒ φ(y) is Lφ-smooth with
Lφ = λmax(A

TA)/µ.

f(x) is L-smooth ⇐⇒ φ(y) is µφ-strongly convex on the
range space of A with µφ = λ+

min(A
TA)/L.

The dual problem miny φ(y) may have multiple solutions of the
form y∗ + ker(AT ).

Informally: If f(x) has condition number L
µ .

Then, φ(y) has condition number λmax(ATA)

λ+
min(A

TA)
L
µ
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A proof sketch
Lets recall Nesterov’s fast gradient method for

min
y

φ(y) (10)

yk+1 = ỹk −
1

Lφ
∇φ(ỹk), (11a)

ỹk+1 = yk+1 +

√
Lφ −

√
µφ√

L+
√
µφ

(yk+1 − yk). (11b)

and

φ(yk)− φ∗ ≤ Lφ

(
1−

√
µφ

Lφ

)k

∥y0 − y∗∥22, (12)
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A proof sketch
Lets recall Nesterov’s fast gradient method for

min
y

φ(y) (10)

x∗(AT ỹk) = argmax
x

{〈
AT ỹk, x

〉
− f(x)

}
(11a)

yk+1 = ỹk −
1

Lφ
Ax∗(AT ỹk), (11b)

ỹk+1 = yk+1 +

√
Lφ −

√
µφ√

Lφ +
√
µφ

(yk+1 − yk). (11c)

and

φ(yk)− φ∗ ≤ Lφ

(
1−

√
µφ

Lφ

)k

∥y0 − y∗∥22, (12)
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What do agents do locally?

Set A =
√
W , zk =

√
Wyk and z̃k =

√
Wỹk

x∗i (z̃
i
k) = argmax

xi

{〈
z̃ik, xi

〉
− fi(xi)

}
zik+1 = z̃ik −

µ

λmax(W )

m∑
j=1

Wijx
∗
j (z̃

j
k)

z̃ik+1 = zik+1 +

√
λmax(W )/µ−

√
λ+
min(W )/L√

λmax(W )/µ+
√
λ+
min(W )/L

(zik+1 − zik)
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