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Research Overview
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Learning from Data

Data is everywhere and holds a significant potential

Image classification, Medical diagnosis, Credit card fraud, . . .

Figure 1: Centralized and distributed learning architectures

Collecting all data at a central location may not be practical

Large, private, datasets with communication constraints

Distributed methods rely on local processing and communication
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A simple case study . . .

Figure 2: Test accuracy of a model trained with 10,000 32× 32 pixel images

When do distributed methods outperform their centralized analogs?

How do we formally quantify such a comparison?
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Some Preliminaries
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Example: Recognizing Traffic Signs

Identify STOP vs. YIELD sign

Figure 3: Binary classification: (Left) Training phase (Right) Testing phase

Input data: images {θj} and their labels {yj}
Model: A classifier x that predicts a label ŷj for each image θj

Changing x changes the predicted label ŷj(x;θj)

Pick a classifier x∗ that minimizes some loss over all images

x∗ = argmin
x∈Rp

∑
j

`(yj , ŷj(x;θj)
)
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Minimizing Functions

min
x

f (x), f :=
∑
j

`(yj , ŷj(x;θj)) : Rp → R

Different predictors ŷ and losses ` lead to different cost functions f

Quadratic: Signal estimation, linear regression, LQR

(Strongly) convex: Logistic regression, classification

Nonconvex: Neural networks, reinforcement learning, blind sensing

This talk

First-order (gradient-based) methods over various function classes

Search for a point x∗ ∈ Rp such that ∇f (x∗) = 0p

When the training data is distributed over a network of nodes
(machines, devices, robots)
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Basic Definitions

f : Rp → R is L-smooth and f (x) ≥ f ∗ ≥ −∞,∀x
Not necessarily convex, bounded above by a quadratic
Assumed throughout

f : Rp → R is convex (lies above all of its tangents)

f is µ-strongly-convex (convex and bounded below by a quadratic)

For SC functions, we have κ := L/µ ≥ 1

Figure 4: Nonconvex: sin(ax)(x + bx2). Convexity. Strong Convexity.
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Smooth function classes

Minimizing smooth (differentiable) functions f : Rp → R
Search for a stationary point x∗ ∈ Rp, i.e., ∇f (x∗) = 0p

Figure 5: Function classes restricted to L-smooth functions

Nonconvex: x∗ may be a minimum, a maximum, or a saddle point

Convex (and PL) functions: f (x∗) is the unique global minimum

Strongly convex functions: x∗ is the unique global minimizer
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First-order methods (Gradient Descent)

min
x∈Rp

f (x)

Search for a stationary point x∗, i.e., ∇f (x∗) = 0p
Intuition: Take a step in the direction opposite to the gradient

At ?, ∇f (x∗) = 0p

Figure 6: Minimizing strongly convex functions: R→ R and R2 → R

Gradient Descent: xk+1 = xk − α · ∇f (xk)
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Function classes: Performance metrics and Rates

Gradient Descent: xk+1 = xk − α · ∇f (xk)

Figure 7: Function classes restricted to L-smooth functions

Convergence rates of GD (non-stochastic and not accelerated):
Nonconvex: ||∇f (xk)|| → 0 at O(1/

√
k)

Convex: f (xk)− f (x∗)→ 0 at O(1/k)
SC (and PL): f (xk)− f (x∗)→ 0 and ‖xk − x∗‖ → 0 exponentially
(linearly on the log-scale)
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How to extend GD when the data is distributed?

Let’s consider a simple example: Linear Regression

Implement local GD at each node i : xik+1 = xik − α · ∇fi (xik)

Figure 8: Linear regression: Locally optimal solutions

Local GD does not lead to agreement on the optimal solution

Requirements for a distributed algorithm

Agreement: Each node agrees on the same solution
Optimality: The agreed upon solution is the optimal
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Distributed optimization
Smooth and strongly convex problems with full gradients
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Distributed Optimization

min
x∈Rp

F (x), F (x) :=
n∑

i=1

fi (x)

f1(x)
f2(x)

fi(x)

Figure 9: A peer-to-peer or edge computing architecture

Assumptions

Each fi is private to node i

Each fi is Li -smooth and µi -strongly-convex (assumed for now!)

The nodes communicate over a network (a connected graph)

F has a unique global minimizer x∗ such that ∇F (x∗) = 0p
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Distributed Gradient Descent (DGD)

xik+1 =
n∑

r=1

wir · xrk − α · ∇fi (xik)

Mix and Descend [Nedić et al. ’09]

The weight matrix W = {wij}≥0 sums to 1 on rows and columns
DGD converges linearly (on a log-scale) up to a steady-state error
Exact convergence with a decaying step-size but at a sublinear rate

0 2000 4000 6000 8000 10000
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10-1

100

101

Figure 10: (Left) An undirected graph. (Right) DGD performance.
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Recap

GD and Distributed GD
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Figure 11: Performance for smooth and strongly convex problems

How do we remove the steady-state error in DGD?
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Distributed Gradient Descent
with

Gradient Tracking
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GT-DGD: Intuition

Problem: minx
∑

i fi (x), i.e., search for x∗ such that
∑

i ∇fi (x∗) = 0p

DGD does not reach x∗ because x∗ is not its fixed point

xik+1 =
∑n

r=1 wir · xrk − α · ∇fi (xik)
x∗ 6= 1 · x∗ − α · ∇fi (x∗)

This is because ∇fi (x∗) 6= 0 but only the sum gradient is

We call this the local-vs.-global dissimilarity bias (η ∼= ‖∇fi −∇F‖)

Fix: Replace ∇fi (xik) with yik that tracks the global gradient ∇F

xik+1 =
n∑

r=1

wir · xrk − α · yik

Linear convergence in distributed optimization (SSC)
Undirected graphs: [Xu et al. ’15], [Lorenzo et al. ’15]

Directed graphs: [Xi-Khan ’15], [Xi-Xin-Khan ’16,’17], [Xin-Khan ’18]
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AB Algorithm

Problem: minx
∑

i fi (x)

DGD: xik+1 =
∑n

r=1 wir · xrk − α · ∇fi (xik)

Algorithm 1 [Xin-Khan ’18]: at each node i

Data: xi0 ∈ Rp; α > 0; {air}nr=1; {bir}nr=1; yi0 = ∇fi (xi0)
for k = 0, 1, . . . , do

xik+1 =
∑n

r=1 air · xrk − α · yrk
yik+1 =

∑n
r=1 bir · yrk +∇fi (xik+1)−∇fi (xik)

end

AB converges linearly to x∗ with the help of Gradient Tracking

Over both directed and undirected graphs

We can further add heavy-ball or Nesterov momentum
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AB: Results (Smooth and Strongly convex)

Linear convergence of AB over both directed and undirected graphs
[Xin-Khan ’18]: For a range of step-sizes α ∈ (0, ᾱ]
[Xin-Khan ’18]: For non-identical step-sizes αi ’s at the nodes
[Pu et al. ’18]: Over mean-connected graphs
[Saadatniaki-Xin-Khan ’18]: Over time-varying random graphs
Asynchronous, delays, nonconvex analysis (but without explicit rates)

Condition number dependence
GD κ, AB undirected κ

5/4, AB directed κ2

AB with heavy-ball momentum
[Xin-Khan ’18]: Linear convergence for a range of alg. parameters
Acceleration is not proved analytically and remains an open problem

AB with Nesterov momentum
[Qu et al. ’18]: Undirected graphs κ

5/7

[Xin-Jakovetić-Khan ’19]: Convergence and acceleration are shown
numerically over directed graphs
Directed graphs: Convergence and acceleration are both open
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Performance comparison

GD, HB, DGD, AB, ABm
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Figure 12: Performance for smooth and strongly convex problems, κ = 100

Addition of gradient tracking recovers linear convergence (proved)

Acceleration can be shown numerically but it is not proved (yet!)

What happens when the gradients are imperfect?
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Distributed Stochastic Optimization

Stochastic gradients with noise variance ν2
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Figure 13: Full gradients (ν2 = 0) vs. stochastic gradients

DSGD: Residual decays linearly to an error ball [Yuan et al. ’19]

lim sup
k→∞

1

n

n∑
i=1

E[‖xik − x∗‖2
2] = O

( α
nµ
ν2 +

α2κ2

1− λ
ν2 +

α2κ2

(1− λ)2
η
)
,

where η quantifies the local-vs.-global dissimilarity bias

Gradient tracking eliminates η but the variance remains
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Distributed Stochastic Optimization
Nonconvex problems
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Distributed Stochastic Optimization:
Measurement Model

min
x

F (x), F (x) :=
n∑

i=1

fi (x), fi : Rp → R

Online/Streaming : Given some x ∈ Rp, each node i makes a noisy
measurement of the local gradient ∇fi (x)

Offline/Batch: Each node i possesses a local dataset with mi data
points and their corresponding labels, i.e., ∇fi (x) =

∑mi

j=1∇fi,j(x)

Figure 14: (Left) Online streaming data (Right) Offline batch data
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Distributed Stochastic Optimization:
Communication Model

Figure 15: Data Center

Controllable topology

# nodes � # local samples

Big-data regime

Figure 16: Internet of Things

Ad hoc topology

# local samples is small

IoT regime
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Distributed Stochastic Optimization

Gradient tracking eliminates η (the local-vs.-global dissimilarity bias)
but the variance ν2 remains

Can we quantify the improvement due to gradient tracking?

Can we eliminate the steady-state error due to the variance?

What can we say about different function classes?
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Batch problems: The GT+VR framework

28 / 47



GT+VR framework

Each node i possesses a local batch of mi data samples

The local cost fi is the sum over all data samples
∑mi

j=1 fi,j

Figure 17: Arbitrary data distribution over the network

Local Gradient computation
∑mi

j=1∇fi,j is prohibitively expensive

Traditionally: xik+1 =
∑

r wir · xrk − α · ∇fi,τ (xik)

Performance is impacted due to sampling and local vs. global bias
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GT+VR framework

The GT+VR framework: From ∇fi,τ to ∇F =
∑n

i=1

∑mi

j=1∇fi,j

Local variance reduction: Sample then Estimate

∇fi,τ → ∇fi =

mi∑
j=1

∇fi,j

Global gradient tracking: Fuse the estimates over the network

∇fi → ∇F =
n∑

i=1

∇fi

Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH

Our work1 : GT-SAGA, GT-SVRG, GT-SARAH

1. R. Xin, S. Kar, and U. A. Khan, “Gradient tracking and variance reduction for decentralized optimization and machine learning,”
IEEE Signal Processing Magazine, 37(3), pp. 102-113, May 2020.
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GT-SAGA

GT-SAGA: Requires O(mip) storage at each node

Figure 18: GT-SAGA at node i

[Xin-Kar-Khan: May ’20, Xin-Khan-Kar: Nov. ’20]

Strongly convex problems: Linear convergence, improved rates
Linear speedup and network-independent convergence for both
nonconvex and nonconvex with PL
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GT-SARAH

GT-SARAH (StochAstic Recursive grAdient algoritHm)
No storage but additional network synchrony when mi 6= mr
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GT-SAGA vs. GT-SARAH

A space vs. time tradeoff: Storage vs. Synchronization

GT-SAGA: For ad hoc problems with heterogeneous data

GT-SARAH: For very large-scale problem in controlled settings

We can show1,2 these tradeoffs theoretically!!!

1. R. Xin, U. A. Khan, and S. Kar, “A fast randomized incremental gradient method for non-convex decentralized stochastic
optimization,” Oct. 2020, arxiv: 2011.03853.

2. R. Xin, U. A. Khan, and S. Kar, “A near-optimal stochastic gradient method for decentralized non-convex finite-sum
optimization,” Aug. 2020, arxiv: 2008.07428.
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GT-SARAH: Smooth and nonconvex

GT plus SARAH based VR

Assume mi = m, ∀i , for simplicity

Theorem (Almost sure and mean-squared results, Xin-Khan-Kar ’20)

At each node i , GT-SARAH’s iterate xik follows

P
(

lim
k→∞

‖∇F (xik)‖ = 0

)
= 1 and lim

k→∞
E
[∥∥∇F (xik)

∥∥2
]

= 0.
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GT-SARAH: Smooth and nonconvex

min
x

n∑
i=1

m∑
j=1

fi,j(x)

Total of N = nm data points divided equally among n nodes

How many gradient computations are required to reach
an ε-accurate solution?

Theorem (Gradient computation complexity, Xin-Khan-Kar ’20)

Under a certain constant step-size α, GT-SARAH, with O(m) inner loop
iterations, reaches an ε-optimal stationary point of the global cost F in

H := O
(

max
{
N

1/2, n
(1−λ)2 ,

(n+m)
1/3n

2/3

1−λ

}(
c · L + 1

n

∑n
i=1 ‖∇fi (x0)‖2

)1

ε

)
gradient computations across all nodes, where c := F

(
x0

)
− F ∗.
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GT-SARAH: Smooth and nonconvex

min
x

n∑
i=1

m∑
j=1

fi,j(x)

Total of N = nm data points divided equally among n nodes

How many gradient computations are required to reach
an ε-accurate solution?

In a certain big-data regime n ≤ O(m(1− λ)6): H = O(N
1/2ε−1)

Independent of the network topology
Linear speedup compared to centralized SARAH
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GT-SARAH: Smooth and nonconvex

Minimize a sum of N := nm smooth nonconvex functions

The rate O(N
1/2ε−1) in the big-data regime matches the centralized

algorithmic lower bound for this problem class [SPIDER: Fang et al. ’18]

Independent of the variance of local gradient estimators

Independent of the local vs. global dissimilarity bias

Independent of the network

Linear speedup
GT-SARAH is n times faster than the centralized SARAH
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Experiments: Nonconvex binary classification

Performance Comparison
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Experiments: Nonconvex binary classification

Effect of network topology in GT-SAGA
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Online Stochastic Nonconvex Problems

What happens for streaming data where VR is not applicable?

GT-DSGD1 : Vanilla distributed SGD + GT

Decaying stepsizes can be used to kill the variance

GT-HSGD2 : A novel way for variance reduction

β · (Local stoch. gradient) + (1− β) · (inner loop of SARAH)

Outperforms existing methods with a β ∈ (0, 1)

1. R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis for decentralized online stochastic non-convex
optimization,” IEEE Transactions on Signal Processing, 69, pp. 1842-1858, Mar. 2021.

2. R. Xin, U. A. Khan, and S. Kar, “A hybrid variance-reduced method for decentralized stochastic non-convex optimization,” in
38th International Conference on Machine Learning, Jul. 2021, accepted for publication.
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Distributed optimization: Demo

Full gradient, distributed linear regression, n = 100 nodes

Each node possesses one data point
Collaborate to learn the slope and intercept
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Conclusions

Gradient tracking for distributed optimization

GT eliminates the local vs. global dissimilarity bias
Linear convergence for smooth and strongly convex problems
Acceleration is possible but analysis is hard!

GT+VR: Gradient tracking for distributed batch optimization

GT-SAGA: State-of-the-art in the IoT regime
GT-SARAH: State-of-the-art in the big-data regime

Gradient tracking for distributed online stochastic optimization

Shown best known rates for strongly convex and nonconvex problems
in applicable regimes
Decaying step-sizes eliminate the variance due to the stochastic grad
Hybrid VR techniques

Network-independent convergence behavior

Outperforms the centralized analogs in applicable regimes
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Optimization for Data-driven Learning and Control

There is a lot more being done and a lot more to do!

P-IEEE Special Issue, vol. 108, no. 11
U. A. Khan, Lead Editor

with Guest Editors: W. U. Bajwa, A. Nedić, M. G. Rabbat, A. H. Sayed
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GT-SARAH: Analysis
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GT-SARAH: Analysis

Use the L-smoothness of F to establish the following lemma

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L
2
‖y − x‖2 ∀x, y ∈ Rp

Lemma (Descent inequality)

If the step-size follows that 0 < α ≤ 1
2L , then we have

E
[
F
(
xT+1,K)] ≤ F (x0,1)−

α

2

K,T∑
k,t

E
[∥∥∥∇F (xt,k )

∥∥∥2
]

− α

 1

4

K,T∑
k,t

E
[∥∥∥vt,k∥∥∥2

]
−

K,T∑
k,t

E
[∥∥∥vt,k−∇f(xt,k )

∥∥∥2
]
− L2

K,T∑
k,t

E
[∥∥∥xt,k − 1⊗ xt,k

∥∥∥2

n

]

The object in red has two errors that we need to bound

Gradient estimation error: E[‖vt,k −∇f(xt,k)‖2]
Agreement error: E[‖xt,k − 1⊗ x̄t,k‖2]
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GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have ∀k ≥ 1,
T∑
t=0

E
[
‖vt,k −∇f(xt,k )‖2

]
≤

3α2TL2

n

T−1∑
t=0

E
[
‖vt,k‖2

]
+

6TL2

n

T∑
t=0

E
[‖xt,k − 1⊗ x̄t,k‖2

n

]
.

Lemma (Agreement error)

If the step-size follows 0 < α ≤ (1−λ2)2

8
√

42L
, then

K∑
k=1

T∑
t=0

E
[
‖xt,k − 1⊗ x̄t,k‖2

n

]
≤

64α2

(1− λ2)3

‖∇f(x0,1)‖2

n
+

1536α4L2

(1− λ2)4

K∑
k=1

T∑
t=0

E
[
‖vt,k‖2

]
.

Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

Analyze the LTI dynamics to obtain the agreement error lemma

Use the two lemmas back in the descent inequality
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GT-SARAH: Analysis

Lemma (Refined descent inequality)

For 0 < α ≤ α := min
{

(1−λ2)2

4
√

42
,
√
n√

6T
,
(

2n
3n+12T

) 1
4 1−λ2

6

}
1

2L
, we have

1

n

n,K,T∑
i,k,t

E
[
‖∇F

(
xt,ki

)
‖2
]
≤

4(F
(
x0,1
)
−F∗)

α
+

(
3

2
+

6T

n

)
256α2L2

(1− λ2)3

∥∥∇f(x0,1)
∥∥2

n
.

Taking K →∞ on both sides leads to
∑∞,T

k,t E[‖∇F (xt,ki )‖] <∞
Mean-squared and a.s. results follow

Divide both sides by K · T and solve for K when the R.H.S ≤ ε
Gradient computation complexity follows by nothing that GT-SARAH
computes n(m + 2T ) gradients per iteration across all nodes
Choose α as the maximum and T = O(m) to obtain the optimal rate
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