Distributed stochastic nonconvex optimization: Optimal regimes and tradeoffs

Usman A. Khan Electrical and Computer Engineering, Tufts University

ZJU-CSE Summer School 2021 Zhejiang University, China August 09, 2021

Acknowledgments

Reza D. (2011-15)

S. Safavi (2013-17)

F. Saadatniaki (2014-19)

Research Overview

Learning from Data

Data is everywhere and holds a significant potential

■ Image classification, Medical diagnosis, Credit card fraud, ...

Figure 1: Centralized and distributed learning architectures

- Collecting all data at a central location may not be practical
 - Large, private, datasets with communication constraints
- Distributed methods rely on local processing and communication

A simple case study ...

Figure 2: Test accuracy of a model trained with 10,000 32×32 pixel images

- When do distributed methods outperform their centralized analogs?
- How do we formally quantify such a comparison?

Some Preliminaries

Example: Recognizing Traffic Signs

Identify STOP vs. YIELD sign

Figure 3: Binary classification: (Left) Training phase (Right) Testing phase

- Input data: images $\{\theta_j\}$ and their labels $\{y_j\}$
- Model: A classifier **x** that predicts a label \widehat{y}_j for each image θ_j
 - Changing x changes the predicted label $\widehat{y}_j(\mathbf{x}; \boldsymbol{\theta}_j)$
- Pick a classifier x* that minimizes *some* loss over all images

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^p} \; \sum_j \ell(y_j, \; \widehat{y_j}(\mathbf{x}; oldsymbol{ heta}_j) \Big)$$

Minimizing Functions

$$\min_{\mathbf{x}} f(\mathbf{x}), \qquad f := \sum_{j} \ell(y_j, \ \widehat{y}_j(\mathbf{x}; \boldsymbol{\theta}_j)) : \mathbb{R}^p \to \mathbb{R}$$

Different predictors \hat{y} and losses ℓ lead to different cost functions f

- Quadratic: Signal estimation, linear regression, LQR
- (Strongly) convex: Logistic regression, classification
- Nonconvex: Neural networks, reinforcement learning, blind sensing
- This talk
- First-order (gradient-based) methods over various function classes
 - Search for a point $\mathbf{x}^* \in \mathbb{R}^p$ such that $\nabla f(\mathbf{x}^*) = \mathbf{0}_p$
 - When the training data is distributed over a network of nodes (machines, devices, robots)

Basic Definitions

- $f: \mathbb{R}^p \to \mathbb{R}$ is *L*-smooth and $f(\mathbf{x}) \ge f^* \ge -\infty, \forall \mathbf{x}$
 - Not necessarily convex, bounded above by a quadratic
 - Assumed throughout
- $f : \mathbb{R}^p \to \mathbb{R}$ is convex (lies above all of its tangents)
- *f* is μ-strongly-convex (convex and bounded below by a quadratic)
 For SC functions, we have κ := ^L/_μ ≥ 1

Figure 4: Nonconvex: $sin(ax)(x + bx^2)$. Convexity. Strong Convexity.

Smooth function classes

- Minimizing smooth (differentiable) functions $f : \mathbb{R}^p \to \mathbb{R}$
 - Search for a stationary point $\mathbf{x}^* \in \mathbb{R}^p$, i.e., $\nabla f(\mathbf{x}^*) = \mathbf{0}_p$

Figure 5: Function classes restricted to L-smooth functions

- Nonconvex: x* may be a minimum, a maximum, or a saddle point
- Convex (and PL) functions: $f(\mathbf{x}^*)$ is the unique global minimum
- Strongly convex functions: **x**^{*} is the unique global minimizer

First-order methods (Gradient Descent)

 $\min_{\mathbf{x}\in\mathbb{R}^p}f(\mathbf{x})$

- Search for a stationary point \mathbf{x}^* , i.e., $\nabla f(\mathbf{x}^*) = \mathbf{0}_{\rho}$
- Intuition: Take a step in the direction opposite to the gradient

• At
$$\star$$
, $\nabla f(\mathbf{x}^*) = \mathbf{0}_{\rho}$

Figure 6: Minimizing strongly convex functions: $\mathbb{R} \to \mathbb{R}$ and $\mathbb{R}^2 \to \mathbb{R}$

Gradient Descent: $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \cdot \nabla f(\mathbf{x}_k)$

Function classes: Performance metrics and Rates

• Gradient Descent: $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \cdot \nabla f(\mathbf{x}_k)$

Figure 7: Function classes restricted to L-smooth functions

Convergence rates of GD (non-stochastic and not accelerated):

- Nonconvex: $||\nabla f(\mathbf{x}_k)|| \rightarrow 0$ at $\mathcal{O}(1/\sqrt{k})$
- Convex: $f(\mathbf{x}_k) f(\mathbf{x}^*) \rightarrow 0$ at $\mathcal{O}(1/k)$
- SC (and PL): $f(\mathbf{x}_k) f(\mathbf{x}^*) \to 0$ and $\|\mathbf{x}_k \mathbf{x}^*\| \to 0$ exponentially (linearly on the log-scale)

How to extend GD when the data is distributed?

- Let's consider a simple example: Linear Regression
- Implement local GD at each node *i*: $\mathbf{x}_{k+1}^i = \mathbf{x}_k^i \alpha \cdot \nabla f_i(\mathbf{x}_k^i)$

Figure 8: Linear regression: Locally optimal solutions

Local GD does not lead to agreement on the optimal solution

- Requirements for a distributed algorithm
 - Agreement: Each node agrees on the same solution
 - Optimality: The agreed upon solution is the optimal

Distributed optimization

Smooth and strongly convex problems with full gradients

Distributed Optimization

Figure 9: A peer-to-peer or edge computing architecture

Assumptions

- Each *f_i* is private to node *i*
- Each *f_i* is *L_i*-smooth and *μ_i*-strongly-convex (*assumed for now!*)
- The nodes communicate over a network (a connected graph)

• F has a unique global minimizer \mathbf{x}^* such that $\nabla F(\mathbf{x}^*) = \mathbf{0}_p$

Distributed Gradient Descent (DGD)

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} \mathbf{w}_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \nabla f_{i}(\mathbf{x}_{k}^{i})$$

Mix and Descend [Nedić et al. '09]

- The weight matrix $W = \{w_{ij}\}_{\geq 0}$ sums to 1 on rows and columns
- DGD converges linearly (on a log-scale) up to a steady-state error
- Exact convergence with a decaying step-size but at a sublinear rate

Figure 10: (Left) An undirected graph. (Right) DGD performance.

Recap

GD and Distributed GD

Figure 11: Performance for smooth and strongly convex problems

• How do we remove the steady-state error in DGD?

Distributed Gradient Descent with Gradient Tracking

GT-DGD: Intuition

Problem: min_x $\sum_{i} f_i(\mathbf{x})$, i.e., search for \mathbf{x}^* such that $\sum_{i} \nabla f_i(\mathbf{x}^*) = \mathbf{0}_p$

■ DGD does not reach \mathbf{x}^* because \mathbf{x}^* is not its fixed point $\mathbf{x}_{k+1}^i = \sum_{r=1}^n w_{ir} \cdot \mathbf{x}_k^r - \alpha \cdot \nabla f_i(\mathbf{x}_k^i)$ $\mathbf{x}^* \neq \mathbf{1} \cdot \mathbf{x}^* - \alpha \cdot \nabla f_i(\mathbf{x}^*)$

- This is because $\nabla f_i(\mathbf{x}^*) \neq 0$ but only the sum gradient is
- We call this the local-vs.-global dissimilarity bias $(\eta \cong \|\nabla f_i \nabla F\|)$
- Fix: Replace $\nabla f_i(\mathbf{x}_k^i)$ with \mathbf{y}_k^i that **tracks** the global gradient ∇F

$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \mathbf{y}_{k}^{i}$$

- Linear convergence in distributed optimization (SSC)
 - Undirected graphs: [Xu et al. '15], [Lorenzo et al. '15]
 - Directed graphs: [Xi-Khan '15], [Xi-Xin-Khan '16, '17], [Xin-Khan '18]

AB Algorithm

Problem: $\min_{\mathbf{x}} \sum_{i} f_i(\mathbf{x})$

DGD:
$$\mathbf{x}_{k+1}^{i} = \sum_{r=1}^{n} w_{ir} \cdot \mathbf{x}_{k}^{r} - \alpha \cdot \nabla f_{i}(\mathbf{x}_{k}^{i})$$

Algorithm 1 [Xin-Khan '18]: at each node i

Data:
$$\mathbf{x}_0^i \in \mathbb{R}^p$$
; $\alpha > 0$; $\{\mathbf{a}_{ir}\}_{r=1}^n$; $\{\mathbf{b}_{ir}\}_{r=1}^n$; $\mathbf{y}_0^i = \nabla f_i(\mathbf{x}_0^i)$
for $k = 0, 1, \dots$, do
 $\mathbf{x}_{k+1}^i = \sum_{r=1}^n \mathbf{a}_{ir} \cdot \mathbf{x}_k^r - \alpha \cdot \mathbf{y}_k^r$
 $\mathbf{y}_{k+1}^i = \sum_{r=1}^n b_{ir} \cdot \mathbf{y}_k^r + \nabla f_i(\mathbf{x}_{k+1}^i) - \nabla f_i(\mathbf{x}_k^i)$
end

- AB converges linearly to x* with the help of Gradient Tracking
 - Over both directed and undirected graphs
- We can further add heavy-ball or Nesterov momentum

AB: Results (Smooth and Strongly convex)

- Linear convergence of AB over both directed and undirected graphs
 - [Xin-Khan '18]: For a range of step-sizes $\alpha \in (\mathbf{0}, \bar{\alpha}]$
 - [Xin-Khan '18]: For non-identical step-sizes α_i 's at the nodes
 - [Pu et al. '18]: Over mean-connected graphs
 - [Saadatniaki-Xin-Khan '18]: Over time-varying random graphs
 - Asynchronous, delays, nonconvex analysis (but without explicit rates)
- Condition number dependence
 - **GD** κ , AB undirected $\kappa^{5/4}$, AB directed κ^2
- AB with heavy-ball momentum
 - [Xin-Khan '18]: Linear convergence for a range of alg. parameters
 - Acceleration is not proved analytically and remains an open problem
- AB with Nesterov momentum
 - [Qu et al. '18]: Undirected graphs $\kappa^{5/7}$
 - [Xin-Jakovetić-Khan '19]: Convergence and acceleration are shown numerically over directed graphs
 - Directed graphs: Convergence and acceleration are both open

Performance comparison

GD, HB, DGD, AB, ABm

Figure 12: Performance for smooth and strongly convex problems, $\kappa = 100$

- Addition of gradient tracking recovers linear convergence (proved)
- Acceleration can be shown numerically but it is not proved (yet!)
- What happens when the gradients are imperfect?

Distributed Stochastic Optimization

Stochastic gradients with noise variance ν^2

Figure 13: Full gradients ($u^2 = 0$) vs. stochastic gradients

DSGD: Residual decays linearly to an error ball [Yuan et al. '19]

$$\limsup_{k\to\infty}\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\|\mathbf{x}_{k}^{i}-\mathbf{x}^{*}\|_{2}^{2}]=\mathcal{O}\Big(\frac{\alpha}{n\mu}\boldsymbol{\nu}^{2}+\frac{\alpha^{2}\kappa^{2}}{1-\lambda}\boldsymbol{\nu}^{2}+\frac{\alpha^{2}\kappa^{2}}{(1-\lambda)^{2}}\boldsymbol{\eta}\Big),$$

where η quantifies the local-vs.-global dissimilarity bias

Gradient tracking eliminates η but the variance remains

Distributed Stochastic Optimization

Nonconvex problems

Distributed Stochastic Optimization: Measurement Model

$$\min_{\mathbf{x}} F(\mathbf{x}), \qquad F(\mathbf{x}) := \sum_{i=1}^{n} f_i(\mathbf{x}), \quad f_i \colon \mathbb{R}^p \to \mathbb{R}$$

- Online/Streaming: Given some $\mathbf{x} \in \mathbb{R}^p$, each node *i* makes a noisy measurement of the local gradient $\nabla f_i(\mathbf{x})$
- Offline/Batch: Each node *i* possesses a local dataset with m_i data points and their corresponding labels, i.e., $\nabla f_i(\mathbf{x}) = \sum_{i=1}^{m_i} \nabla f_{i,j}(\mathbf{x})$

Figure 14: (Left) Online streaming data (Right) Offline batch data

Distributed Stochastic Optimization: Communication Model

Figure 15: Data Center

- Controllable topology
- # nodes $\ll \#$ local samples
- Big-data regime

Figure 16: Internet of Things

- Ad hoc topology
- # local samples is small
- IoT regime

Distributed Stochastic Optimization

- Gradient tracking eliminates η (the local-vs.-global dissimilarity bias) but the variance ν^2 remains
- Can we quantify the improvement due to gradient tracking?
- Can we eliminate the steady-state error due to the variance?
- What can we say about different function classes?

Batch problems: The GT+VR framework

GT+VR framework

Each node *i* possesses a local batch of *m_i* data samples

• The local cost f_i is the sum over all data samples $\sum_{j=1}^{m_i} f_{i,j}$

Figure 17: Arbitrary data distribution over the network

- Local Gradient computation $\sum_{j=1}^{m_i} \nabla f_{i,j}$ is prohibitively expensive
- Traditionally: $\mathbf{x}_{k+1}^{i} = \sum_{r} w_{ir} \cdot \mathbf{x}_{k}^{r} \alpha \cdot \nabla f_{i,\tau}(\mathbf{x}_{k}^{i})$
 - Performance is impacted due to sampling and local vs. global bias

GT+VR framework

- The GT+VR framework: From $\nabla f_{i,\tau}$ to $\nabla F = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \nabla f_{i,j}$
 - Local variance reduction: Sample then Estimate

$$abla f_{i, au} o
abla f_i = \sum_{j=1}^{m_i}
abla f_{i,j}$$

Global gradient tracking: Fuse the estimates over the network

$$abla f_i o
abla F = \sum_{i=1}^n
abla f_i$$

Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH
 Our work¹: GT-SAGA, GT-SVRG, GT-SARAH

^{1.} R. Xin, S. Kar, and U. A. Khan, "Gradient tracking and variance reduction for decentralized optimization and machine learning," IEEE Signal Processing Magazine, 37(3), pp. 102-113, May 2020.

• GT-SAGA: Requires $\mathcal{O}(m_i p)$ storage at each node

Figure 18: GT-SAGA at node *i*

- [Xin-Kar-Khan: May '20, Xin-Khan-Kar: Nov. '20]
 - Strongly convex problems: Linear convergence, improved rates
 - Linear speedup and network-independent convergence for both nonconvex and nonconvex with PL

GT-SARAH

- GT-SARAH (StochAstic Recursive grAdient algoritHm)
 - No storage but additional network synchrony when $m_i \neq m_r$

GT-SAGA vs. GT-SARAH

A space vs. time tradeoff: Storage vs. Synchronization

- GT-SAGA: For ad hoc problems with heterogeneous data
- GT-SARAH: For very large-scale problem in controlled settings
- We can show^{1,2} these tradeoffs theoretically!!!

^{1.} R. Xin, U. A. Khan, and S. Kar, "A fast randomized incremental gradient method for non-convex decentralized stochastic optimization," Oct. 2020, arXiv: 2011.03853.

^{2.} R. Xin, U. A. Khan, and S. Kar, "A near-optimal stochastic gradient method for decentralized non-convex finite-sum optimization," Aug. 2020, arxiv: 2008.07428.

- GT plus SARAH based VR
 - Assume $m_i = m, \forall i$, for simplicity

Theorem (Almost sure and mean-squared results, Xin-Khan-Kar '20)

At each node i, GT-SARAH's iterate \mathbf{x}_{k}^{i} follows

$$\mathbb{P}\left(\lim_{k\to\infty} \|\nabla F(\mathbf{x}_k^i)\| = 0\right) = 1 \quad \text{and} \quad \lim_{k\to\infty} \mathbb{E}\left[\left\|\nabla F(\mathbf{x}_k^i)\right\|^2\right] = 0.$$

$$\min_{\mathbf{x}} \sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j}(\mathbf{x})$$

- Total of N = nm data points divided equally among n nodes
- How many gradient computations are required to reach an *ϵ*-accurate solution?

Theorem (Gradient computation complexity, Xin-Khan-Kar '20)

Under a certain constant step-size α , GT-SARAH, with $\mathcal{O}(m)$ inner loop iterations, reaches an ϵ -optimal stationary point of the global cost F in

$$\mathcal{H} := \mathcal{O}\left(\max\left\{\boldsymbol{N}^{1/2}, \frac{n}{(1-\lambda)^2}, \frac{(n+m)^{1/3}n^{2/3}}{1-\lambda}\right\} \left(\boldsymbol{c} \cdot \boldsymbol{L} + \frac{1}{n}\sum_{i=1}^{n} \|\nabla f_i(\overline{\mathbf{x}}_0)\|^2\right) \frac{1}{\epsilon}\right)$$

gradient computations across all nodes, where $c := F(\overline{x}_0) - F^*$.

$$\min_{\mathbf{x}} \sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j}(\mathbf{x})$$

- Total of N = nm data points divided equally among n nodes
- How many gradient computations are required to reach an *ϵ*-accurate solution?
- In a certain big-data regime $n \leq \mathcal{O}(m(1-\lambda)^6)$: $\mathcal{H} = \mathcal{O}(N^{1/2}\epsilon^{-1})$
 - Independent of the network topology
 - Linear speedup compared to centralized SARAH

- Minimize a sum of N := nm smooth nonconvex functions
- The rate O(N^{1/2} e⁻¹) in the big-data regime matches the centralized algorithmic lower bound for this problem class [SPIDER: Fang et al. '18]
- Independent of the variance of local gradient estimators
- Independent of the local vs. global dissimilarity bias
- Independent of the network
- Linear speedup GT-SARAH is n times faster than the centralized SARAH

Experiments: Nonconvex binary classification

- Big-data regime
- 10×10 grid graph

- IoT regime
- Nearest neighbor graph

Experiments: Nonconvex binary classification

Effect of network topology in GT-SAGA

Big-data regime

IoT regime

Online Stochastic Nonconvex Problems

- What happens for streaming data where VR is not applicable?
- GT-DSGD¹: Vanilla distributed SGD + GT
- Decaying stepsizes can be used to kill the variance
- GT-HSGD²: A novel way for variance reduction
 - $eta \cdot (extsf{Local stoch. gradient}) + (1 eta) \cdot (extsf{inner loop of SARAH})$
- Outperforms existing methods with a $\beta \in (0,1)$

^{1.} R. Xin, U. A. Khan, and S. Kar, "An improved convergence analysis for decentralized online stochastic non-convex optimization," IEEE Transactions on Signal Processing, 69, pp. 1842-1858, Mar. 2021.

^{2.} R. Xin, U. A. Khan, and S. Kar, "A hybrid variance-reduced method for decentralized stochastic non-convex optimization," in 38th International Conference on Machine Learning, Jul. 2021, accepted for publication.

Distributed optimization: Demo

Full gradient, distributed linear regression, n = 100 nodes

- Each node possesses one data point
- Collaborate to learn the slope and intercept

Conclusions

- Gradient tracking for distributed optimization
 - GT eliminates the local vs. global dissimilarity bias
 - Linear convergence for smooth and strongly convex problems
 - Acceleration is possible but analysis is hard!
- GT+VR: Gradient tracking for distributed batch optimization
 - GT-SAGA: State-of-the-art in the IoT regime
 - GT-SARAH: State-of-the-art in the big-data regime
- Gradient tracking for distributed online stochastic optimization
 - Shown best known rates for strongly convex and nonconvex problems in applicable regimes
 - Decaying step-sizes eliminate the variance due to the stochastic grad
 - Hybrid VR techniques
- Network-independent convergence behavior
- Outperforms the centralized analogs in applicable regimes

Optimization for Data-driven Learning and Control

- There is a lot more being done and a lot more to do!
- P-IEEE Special Issue, vol. 108, no. 11
 U. A. Khan, *Lead Editor* with Guest Editors: W. U. Bajwa, A. Nedić, M. G. Rabbat, A. H. Sayed

• Use the *L*-smoothness of *F* to establish the following lemma $F(\mathbf{y}) \leq F(\mathbf{x}) + \langle \nabla F(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{l}{2} \|\mathbf{y} - \mathbf{x}\|^2 \qquad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

Lemma (Descent inequality)

If the step-size follows that $0 < \alpha \leq \frac{1}{2L}$, then we have $\mathbb{E}\left[F(\bar{\mathbf{x}}^{T+1,K})\right] \leq F(\bar{\mathbf{x}}^{0,1}) - \frac{\alpha}{2} \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\nabla F(\bar{\mathbf{x}}^{t,k})\right\|^{2}\right]$ $- \alpha \left(\frac{1}{4} \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\bar{\mathbf{v}}^{t,k}\right\|^{2}\right] - \sum_{k,t}^{K,T} \mathbb{E}\left[\left\|\bar{\mathbf{v}}^{t,k} - \overline{\nabla f}(\mathbf{x}^{t,k})\right\|^{2}\right] - L^{2} \sum_{k,t}^{K,T} \mathbb{E}\left[\frac{\left\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \bar{\mathbf{x}}^{t,k}\right\|^{2}}{n}\right]\right)$

- The object in red has two errors that we need to bound
 - Gradient estimation error: $\mathbb{E}[\|\overline{\mathbf{v}}^{t,k} \overline{\nabla \mathbf{f}}(\mathbf{x}^{t,k})\|^2]$
 - Agreement error: $\mathbb{E}[\|\mathbf{x}^{t,k} \mathbf{\hat{1}} \otimes \mathbf{\bar{x}}^{t,k}\|^2]$

Lemma (Gradient estimation error)

We have
$$\forall k \geq 1$$
,
$$\sum_{t=0}^{T} \mathbb{E}\left[\|\overline{\mathbf{v}}^{t,k} - \overline{\nabla \mathbf{f}}(\mathbf{x}^{t,k})\|^2\right] \leq \frac{3\alpha^2 T L^2}{n} \sum_{t=0}^{T-1} \mathbb{E}\left[\|\overline{\mathbf{v}}^{t,k}\|^2\right] + \frac{6 T L^2}{n} \sum_{t=0}^{T} \mathbb{E}\left[\frac{\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \overline{\mathbf{x}}^{t,k}\|^2}{n}\right].$$

Lemma (Agreement error)

If the step-size follows $0 < \alpha \le \frac{(1-\lambda^2)^2}{8\sqrt{42L}}$, then $\sum_{k=1}^{K} \sum_{t=0}^{T} \mathbb{E}\left[\frac{\|\mathbf{x}^{t,k} - \mathbf{1} \otimes \bar{\mathbf{x}}^{t,k}\|^2}{n}\right] \le \frac{64\alpha^2}{(1-\lambda^2)^3} \frac{\|\nabla f(\mathbf{x}^{0,1})\|^2}{n} + \frac{1536\alpha^4 L^2}{(1-\lambda^2)^4} \sum_{k=1}^{K} \sum_{t=0}^{T} \mathbb{E}\left[\|\bar{\mathbf{v}}^{t,k}\|^2\right].$

- Agreement error is coupled with the gradient estimation error
- Derive an LTI system that describes their evolution
- Analyze the LTI dynamics to obtain the agreement error lemma

Use the two lemmas back in the descent inequality

Lemma (Refined descent inequality)

$$\begin{aligned} & \text{For } 0 < \alpha \leq \overline{\alpha} := \min\left\{\frac{(1-\lambda^2)^2}{4\sqrt{42}}, \frac{\sqrt{n}}{\sqrt{6T}}, \left(\frac{2n}{3n+12T}\right)^{\frac{1}{4}}\frac{1-\lambda^2}{6}\right\}\frac{1}{2L}, \text{ we have} \\ & \frac{1}{n}\sum_{i,k,t}^{n,K,T} \mathbb{E}\Big[\|\nabla F(\mathbf{x}_i^{t,k})\|^2\Big] \leq \frac{4(F(\overline{\mathbf{x}}^{0,1}) - F^*)}{\alpha} + \left(\frac{3}{2} + \frac{6T}{n}\right)\frac{256\alpha^2 L^2}{(1-\lambda^2)^3}\frac{\|\nabla f(\mathbf{x}^{0,1})\|^2}{n}. \end{aligned}$$

- Taking $K \to \infty$ on both sides leads to $\sum_{k,t}^{\infty, T} \mathbb{E}[\|\nabla F(\mathbf{x}_i^{t,k})\|] < \infty$ ■ Mean-squared and a.s. results follow
- Divide both sides by $K \cdot T$ and solve for K when the R.H.S $\leq \epsilon$
 - Gradient computation complexity follows by nothing that GT-SARAH computes n(m + 2T) gradients per iteration across all nodes
 - Choose α as the maximum and $T = \mathcal{O}(m)$ to obtain the optimal rate