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 Optimization in Machine Learning

Outline

 Accelerated Gradient Descent for deterministic optimization

 Accelerated Gradient Descent for stochastic optimization

 Accelerated Gradient Descent for distributed optimization



 First-Order Optimization Algorithms

Focus of This Talk

 Accelerated Algorithms

 Convex Optimization

 Widely Used in Machine Learning

• Not higher-order algorithms, such as Newton’s method

• Not nonconvex optimization

• Not control, finance



 Goal

• Use this knowledge to make decisions or predictions about other data.

Machine Learning

• Extract meaning from data: understand statistical properties, learn 
important features and fundamental structures in the data.

Machine Learning = Representation + Optimization + Evaluation

• Most of the machine learning problems are, in the end, optimization problems.

 Machine learning is one of the fastest-growing areas. 

 Optimization is at the heart of machine learning



 After cleaning and formatting, obtain a data set of objects 

• Outcome  for each feature vector

Typical Setup

• Vectors of input features: 

 The outcomes  could be:

• a real number: regression.

• a label indicating that  lies in one of classes (for ): classification.

• no labels (  is null), e.g., clustering: partition the  into a few clusters.



 Seek a function            parametrized by that

Fundamental Machine Learning Task

• (training) approximately maps  to  for each in the training set: 

 Example of prediction functions

• Highly non-linear neural network

 Training: optimization comes into play.

• Compute the parameter which explains at best the data.

• (testing) use the model to predict the output on new inputs.



Training

 Typically, the training phase is formulated as an optimization problem

try to find (quickly) solutions.

 Interests of the regularization term 

• avoid over-fitting on known data to better generalize to new data.

 Loss function : measure of the mismatch.

 Practical consequences for training



Properties of Optimization Problems in Machine Learning

 Recall the optimization problem in machine learning

 Large data: is large

 High dimension:    is large.

• First-order algorithms, not higher-order algorithms

• 1,281,167 training images in ImageNet

• Stochastic algorithms and distributed algorithms

• Millions of weights in deep neural network



Basic Introduction to Convex Optimization

 Recall that training phase is formulated as an optimization problem

 Nonconvex formulations are more natural, but harder to solve and analyze.

Convex function                                 Non-convex function

 Convex formulations are often tractable and efficient in practice.



 Convex function

• A function           is convex if for any                       
and any                  , 

• Property

We assume that            is differentiable 
such that               exists.  

• is the global minimizer of           , if and only if 

Basic Introduction to Convex Optimization



 Strongly convex function

• A function           is strongly convex if for any                         and any                  , 

• Property

Basic Introduction to Convex Optimization

• The minimizer is unique



 Smoothness

• From Taylor’s theorem, for some z we have

• Using that ் ଶ ଶ for any and , we have

• Global quadratic upper bound on function value

Basic Introduction to Convex Optimization

• Another form:



Gradient Descent

 Consider the basic problem ௫ .

 We have the upper bound

 treating ାଵ as a variable that 
minimizing the right side gives

• every iteration is inexpensive

• does not require second derivatives



Convergence Rate of Gradient Descent

Theorem: Suppose that the function        is convex and smooth, then for GD 
we have

 We say the convergence rate of gradient descent is 

 Equivalently, to find an     accurate solution    such that                                ,   

we need          iterations. We say the complexity of gradient descent is    



Proof of the Convergence Rate



Proof of the Convergence Rate



Convergence Rate of Gradient Descent

Theorem: Suppose that the function        is strongly convex and smooth, then 
for GD, we have

 We say the convergence rate of gradient descent is 

 Equivalently, to find an     accurate solution    such that                                ,   

we need                    iterations. We say the complexity of GD is    



Summary of the Complexity of Gradient Descent

 Can we hope to further accelerate convergence? Yes

• Heavy ball method

• Accelerated gradient method



Heavy Ball Method  with Momentum

 Fundamental idea:

• Exploit information from the history (i.e. past iterates)

Search direction at iteration depends on the latest gradient  and also 
the search direction at iteration , 

• Use momentum to predict the trajectory

 The heavy ball method



An Intuitive Comparison



Convergence Rate of the Heavy Ball Method

Theorem: Suppose that the function        is strongly convex and smooth, and 
moreover, it is twice continuously differentiable, then for HB, we have

Theorem: Suppose that the function        is convex and smooth, then for HB, 
we have

 HB Converges faster than GD only for strongly convex problems



Summary of the Complexity Comparisons

 Can we further accelerate convergence for general convex problems? Yes

• Accelerated gradient method



Accelerated Gradient Descent

 Also use the history information and momentum

where      is computed by                                   ,which is obtained from
and               ,   

 Recall the heavy ball iterations

 Different momentum



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function        is convex and smooth, then for AGD, 
we have

 The convergence rate of accelerated gradient descent is 

 Equivalently, the complexity of accelerated gradient descent is 

 Recall that the convergence rate of gradient descent is           (or          ) 



Numerical Comparisons



Proof of the Convergence Rate



Proof of the Convergence Rate



Proof of the Convergence Rate



Accelerated Gradient Descent

 For strongly convex problems,

 Recall the iterations for nonstrongly convex problems



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function        is strongly convex and smooth, then 
for AGD, we have

 The convergence rate of accelerated gradient descent is 

 Equivalently, the complexity of accelerated gradient descent is 

 Recall that the convergence rate of gradient descent is 

(or                    complexity ) 



Summary of the Complexity Comparisons



Another Accelerated Gradient Descent

 Algorithm iterations:

 Equivalent to the previous one:

 Useful in the extension to composite
optimization, stochastic optimization,
and distributed optimization



Another Accelerated Gradient Descent

 For strongly convex problems

 Not equivalent to the previous one



Lower Bounds

Theorem: There exists a special convex and smooth function        such that 
for any first-order algorithms satisfying 

we have

 Give the possible fastest convergence rate among all first-order algorithms

 No first-order algorithm can be faster than the lower bound

 An algorithm is optimal if its convergence rate equals to the lower bound

 Recall the upper bound of AGD:



Lower Bounds
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Lower Bounds

Theorem: There exists a special convex and smooth function        such that 
for any first-order algorithms satisfying 

we have

 Give the possible fastest convergence rate among all first-order algorithms

 No first-order algorithm can be faster than the lower bound

 An algorithm is optimal if its convergence rate equals to the lower bound

 Recall the upper bound of AGD:



Lower Bounds

Theorem: There exists a special strongly convex and smooth function        
such that for any first-order algorithms satisfying 

we have

 For strongly convex problems:

 Recall the convergence rate of AGD:



Summary of the Complexity Comparisons

 The complexities of accelerated gradient descent match the lower bounds 

 Accelerated gradient descent is the optimal first-order method

It cannot be improved!



Full Gradient: Does It Make Sense?

 Recall that in machine learning, the optimization problem is often

 They are less appealing when is large. To calculate

generally need to make a full pass through the data.

 The methods above, based on full gradients.



Stochastic Gradient Descent

 Stochastic gradient iterations:

 Fundamental idea:

• Sample, in each iteration, one or several gradients as an estimator of the full gradient

• Step size: 

 Compare with gradient descent



Stochastic Gradient Descent

 ೖ  is a approximation for 

• Unbiased: 

• The variance  will never go to zero even if 

 Slow convergence rate due to the variance



Stochastic Gradient Descent

 Compare between gradient descent (GD) and stochastic gradient descent 
(SGD)

 Can we expect faster convergence rate? 

Yes, by variance reduction

• SGD is more appealing for large n 



Variance Reduction

 Fundamental idea:

• Keep a snapvector after every      SGD iterations, and use    

• In each iteration, we only compute                 and               .                    is computed

after every      SGD iterations. So the cost in each iteration is the same with SGD

as the descent direction:



Variance Reduction

 is an approximation of the full gradient

• Unbiased: 

• The variance reduces to zero

where we use the following inequality in the third step
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Variance Reduction

 is an approximation of the full gradient

• Unbiased: 

• The variance reduces to zero

where we use the following inequality in the third step



Stochastic Variance Reduction Gradient

 SVRG iterations:

Theorem: Suppose that the each        is convex and smooth,         is strongly 
convex, then for SVRG, we need

Iterations such that 



Stochastic Variance Reduction Gradient
 Complexity comparisons:

 SVRG Combines the advantages of GD and SGD

• The same convergence rate with GD when  

• The same cost per iteration with SGD

• Lower total cost than both GD and SGD

 Other VR methods

• Stochastic Average Gradient (SAG), Stochastic Dual Coordinate Ascent (SDCA), SAGA



Accelerated Stochastic Variance Reduction Gradient
 Combines SVRG with accelerated gradient descent



Accelerated Stochastic Variance Reduction Gradient

Theorem: Suppose that the each        is convex and smooth,         is strongly 
convex, then for accelerated SVRG, we need

Iterations such that 

 Recall that the complexity of SVRG is 

 We always have                                             , so the accelerated SVRG is 

always not worse than SVRG. The strict inequality holds when  

 When          , we have                                             , acceleration takes no effect



Accelerated Stochastic Variance Reduction Gradient

 Complexity comparisons:

 The iteration complexity of accelerated SVRG matches the lower bound. So 
it is optimal

 Acceleration has no help to improve SGD



Accelerated Stochastic Variance Reduction Gradient

 Other accelerated algorithms for stochastic optimization

• Accelerated Stochastic Coordinate Descent

• Accelerated Stochastic Primal–Dual Method

• Accelerated Stochastic Dual Coordinate Ascent

• A Universal Catalyst Acceleration Framework



Distributed Optimization

 Distributed optimization has broad applications in machine learning

• Large scale training data distributed among a group of servers

• Data are generated and stored by the mobile users

 Typical setup

• Consider problem

• The local function           represents the data on node i. It is only available to node i. 

• The nodes are connected by a network



Distributed Optimization

 Communication network

• Directed or undirected. We only consider undirected network here

• The largest singular value of W:              ; The second largest singular value:  

• One example

• The network is described by a mixing matrix                      to characterize the 
connectivity and the weight of the communication edges



Distributed Gradient Descent

 Compact form

 Each node keeps an auxiliary variable         and updates it by local 
computations on                   and local communications with its neighbors

by letting



Slow Convergence of Distributed Gradient Descent

 Assume                    , then we have

At the minimum, we have                                . However, we often have  

So we should let 

 Slow           convergence rate due to the diminishing stepsize, even for

smooth and strongly convex problems. The same with SGD

 Can we expect faster convergence rate? Yes, by gradient tracking



Gradient Tracking

 Each node keeps an auxiliary variable           as the descent direction 

The first step gives                                    , so if we have                                 and 

 Compact form

, then we have                                           , so the second step 
approximates gradient descent



Gradient Tracking

Theorem: Suppose that each         is convex and smooth, then for GT we 
need

Iterations to find x such that 

Theorem: Suppose that each         is strongly convex and smooth, then for GT 
we need

Iterations to find x such that 



Accelerated Gradient Tracking
 Combines gradient tracking with accelerated gradient descent



Accelerated Gradient Tracking

Theorem: Suppose that each         is convex and smooth, then for Acc-GT we 
need

Iterations to find x such that 

Theorem: Suppose that each         is strongly convex and smooth, then for 
Acc-GT we need

Iterations to find x such that 



Accelerated Gradient Tracking

 Complexity comparisons:

 The iteration complexity of accelerated gradient tracking combined with 
Chebyshev acceleration matches the lower bound. So it is optimal



Accelerated Gradient Tracking

 Other accelerated algorithms for distributed optimization

• Accelerated Dual Ascent

• Accelerated Primal-Dual Method



Conclusions and Take Home Messages

 Accelerated gradient descent is the theoretical fastest first-order algorithm 
for unconstrained convex optimization

 Accelerated algorithms always perform much faster than non-accelerated 
algorithms in practice. Just use it.

 Accelerated gradient descent has been successfully extended to stochastic 
optimization and distributed optimization
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Thanks for your attention!


