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 Optimization in Machine Learning

Outline

 Accelerated Gradient Descent for deterministic optimization

 Accelerated Gradient Descent for stochastic optimization

 Accelerated Gradient Descent for distributed optimization



 First-Order Optimization Algorithms

Focus of This Talk

 Accelerated Algorithms

 Convex Optimization

 Widely Used in Machine Learning

• Not higher-order algorithms, such as Newton’s method

• Not nonconvex optimization

• Not control, finance



 Goal

• Use this knowledge to make decisions or predictions about other data.

Machine Learning

• Extract meaning from data: understand statistical properties, learn 
important features and fundamental structures in the data.

Machine Learning = Representation + Optimization + Evaluation

• Most of the machine learning problems are, in the end, optimization problems.

 Machine learning is one of the fastest-growing areas. 

 Optimization is at the heart of machine learning



 After cleaning and formatting, obtain a data set of objects 

• Outcome ௝ for each feature vector

Typical Setup

• Vectors of input features: ௝

 The outcomes ௝ could be:

• a real number: regression.

• a label indicating that ௝ lies in one of classes (for ): classification.

• no labels ( ௝ is null), e.g., clustering: partition the ௝ into a few clusters.



 Seek a function            parametrized by that

Fundamental Machine Learning Task

• (training) approximately maps ௝ to ௝ for each in the training set: 

 Example of prediction functions

• Highly non-linear neural network

 Training: optimization comes into play.

• Compute the parameter which explains at best the data.

• (testing) use the model to predict the output on new inputs.



Training

 Typically, the training phase is formulated as an optimization problem

try to find (quickly) solutions.

 Interests of the regularization term 

• avoid over-fitting on known data to better generalize to new data.

 Loss function : measure of the mismatch.

 Practical consequences for training



Properties of Optimization Problems in Machine Learning

 Recall the optimization problem in machine learning

 Large data: is large

 High dimension:    is large.

• First-order algorithms, not higher-order algorithms

• 1,281,167 training images in ImageNet

• Stochastic algorithms and distributed algorithms

• Millions of weights in deep neural network



Basic Introduction to Convex Optimization

 Recall that training phase is formulated as an optimization problem

 Nonconvex formulations are more natural, but harder to solve and analyze.

Convex function                                 Non-convex function

 Convex formulations are often tractable and efficient in practice.



 Convex function

• A function           is convex if for any                       
and any                  , 

• Property

We assume that            is differentiable 
such that               exists.  

• is the global minimizer of           , if and only if 

Basic Introduction to Convex Optimization



 Strongly convex function

• A function           is strongly convex if for any                         and any                  , 

• Property

Basic Introduction to Convex Optimization

• The minimizer is unique



 Smoothness

• From Taylor’s theorem, for some z we have

• Using that ் ଶ ଶ for any and , we have

• Global quadratic upper bound on function value

Basic Introduction to Convex Optimization

• Another form:



Gradient Descent

 Consider the basic problem ௫ .

 We have the upper bound

 treating ௞ାଵ as a variable that 
minimizing the right side gives

• every iteration is inexpensive

• does not require second derivatives



Convergence Rate of Gradient Descent

Theorem: Suppose that the function        is convex and smooth, then for GD 
we have

 We say the convergence rate of gradient descent is 

 Equivalently, to find an     accurate solution    such that                                ,   

we need          iterations. We say the complexity of gradient descent is    



Proof of the Convergence Rate



Proof of the Convergence Rate



Convergence Rate of Gradient Descent

Theorem: Suppose that the function        is strongly convex and smooth, then 
for GD, we have

 We say the convergence rate of gradient descent is 

 Equivalently, to find an     accurate solution    such that                                ,   

we need                    iterations. We say the complexity of GD is    



Summary of the Complexity of Gradient Descent

 Can we hope to further accelerate convergence? Yes

• Heavy ball method

• Accelerated gradient method



Heavy Ball Method  with Momentum

 Fundamental idea:

• Exploit information from the history (i.e. past iterates)

Search direction at iteration depends on the latest gradient ௞ and also 
the search direction at iteration , 

• Use momentum to predict the trajectory

 The heavy ball method



An Intuitive Comparison



Convergence Rate of the Heavy Ball Method

Theorem: Suppose that the function        is strongly convex and smooth, and 
moreover, it is twice continuously differentiable, then for HB, we have

Theorem: Suppose that the function        is convex and smooth, then for HB, 
we have

 HB Converges faster than GD only for strongly convex problems



Summary of the Complexity Comparisons

 Can we further accelerate convergence for general convex problems? Yes

• Accelerated gradient method



Accelerated Gradient Descent

 Also use the history information and momentum

where      is computed by                                   ,which is obtained from
and               ,   

 Recall the heavy ball iterations

 Different momentum



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function        is convex and smooth, then for AGD, 
we have

 The convergence rate of accelerated gradient descent is 

 Equivalently, the complexity of accelerated gradient descent is 

 Recall that the convergence rate of gradient descent is           (or          ) 



Numerical Comparisons



Proof of the Convergence Rate



Proof of the Convergence Rate



Proof of the Convergence Rate



Accelerated Gradient Descent

 For strongly convex problems,

 Recall the iterations for nonstrongly convex problems



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function        is strongly convex and smooth, then 
for AGD, we have

 The convergence rate of accelerated gradient descent is 

 Equivalently, the complexity of accelerated gradient descent is 

 Recall that the convergence rate of gradient descent is 

(or                    complexity ) 



Summary of the Complexity Comparisons



Another Accelerated Gradient Descent

 Algorithm iterations:

 Equivalent to the previous one:

 Useful in the extension to composite
optimization, stochastic optimization,
and distributed optimization



Another Accelerated Gradient Descent

 For strongly convex problems

 Not equivalent to the previous one



Lower Bounds

Theorem: There exists a special convex and smooth function        such that 
for any first-order algorithms satisfying 

we have

 Give the possible fastest convergence rate among all first-order algorithms

 No first-order algorithm can be faster than the lower bound

 An algorithm is optimal if its convergence rate equals to the lower bound

 Recall the upper bound of AGD:
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Lower Bounds

Theorem: There exists a special convex and smooth function        such that 
for any first-order algorithms satisfying 

we have

 Give the possible fastest convergence rate among all first-order algorithms

 No first-order algorithm can be faster than the lower bound

 An algorithm is optimal if its convergence rate equals to the lower bound

 Recall the upper bound of AGD:



Lower Bounds

Theorem: There exists a special strongly convex and smooth function        
such that for any first-order algorithms satisfying 

we have

 For strongly convex problems:

 Recall the convergence rate of AGD:



Summary of the Complexity Comparisons

 The complexities of accelerated gradient descent match the lower bounds 

 Accelerated gradient descent is the optimal first-order method

It cannot be improved!



Full Gradient: Does It Make Sense?

 Recall that in machine learning, the optimization problem is often

 They are less appealing when is large. To calculate

generally need to make a full pass through the data.

 The methods above, based on full gradients.



Stochastic Gradient Descent

 Stochastic gradient iterations:

 Fundamental idea:

• Sample, in each iteration, one or several gradients as an estimator of the full gradient

• Step size: 

 Compare with gradient descent



Stochastic Gradient Descent

 ௝ೖ ௞ is a approximation for ௞

• Unbiased: 

• The variance  will never go to zero even if 

 Slow convergence rate due to the variance



Stochastic Gradient Descent

 Compare between gradient descent (GD) and stochastic gradient descent 
(SGD)

 Can we expect faster convergence rate? 

Yes, by variance reduction

• SGD is more appealing for large n 



Variance Reduction

 Fundamental idea:

• Keep a snapvector after every      SGD iterations, and use    

• In each iteration, we only compute                 and               .                    is computed

after every      SGD iterations. So the cost in each iteration is the same with SGD

as the descent direction:



Variance Reduction

 is an approximation of the full gradient

• Unbiased: 

• The variance reduces to zero

where we use the following inequality in the third step
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Variance Reduction

 is an approximation of the full gradient

• Unbiased: 

• The variance reduces to zero

where we use the following inequality in the third step



Stochastic Variance Reduction Gradient

 SVRG iterations:

Theorem: Suppose that the each        is convex and smooth,         is strongly 
convex, then for SVRG, we need

Iterations such that 



Stochastic Variance Reduction Gradient
 Complexity comparisons:

 SVRG Combines the advantages of GD and SGD

• The same convergence rate with GD when  

• The same cost per iteration with SGD

• Lower total cost than both GD and SGD

 Other VR methods

• Stochastic Average Gradient (SAG), Stochastic Dual Coordinate Ascent (SDCA), SAGA



Accelerated Stochastic Variance Reduction Gradient
 Combines SVRG with accelerated gradient descent



Accelerated Stochastic Variance Reduction Gradient

Theorem: Suppose that the each        is convex and smooth,         is strongly 
convex, then for accelerated SVRG, we need

Iterations such that 

 Recall that the complexity of SVRG is 

 We always have                                             , so the accelerated SVRG is 

always not worse than SVRG. The strict inequality holds when  

 When          , we have                                             , acceleration takes no effect



Accelerated Stochastic Variance Reduction Gradient

 Complexity comparisons:

 The iteration complexity of accelerated SVRG matches the lower bound. So 
it is optimal

 Acceleration has no help to improve SGD



Accelerated Stochastic Variance Reduction Gradient

 Other accelerated algorithms for stochastic optimization

• Accelerated Stochastic Coordinate Descent

• Accelerated Stochastic Primal–Dual Method

• Accelerated Stochastic Dual Coordinate Ascent

• A Universal Catalyst Acceleration Framework



Distributed Optimization

 Distributed optimization has broad applications in machine learning

• Large scale training data distributed among a group of servers

• Data are generated and stored by the mobile users

 Typical setup

• Consider problem

• The local function           represents the data on node i. It is only available to node i. 

• The nodes are connected by a network



Distributed Optimization

 Communication network

• Directed or undirected. We only consider undirected network here

• The largest singular value of W:              ; The second largest singular value:  

• One example

• The network is described by a mixing matrix                      to characterize the 
connectivity and the weight of the communication edges



Distributed Gradient Descent

 Compact form

 Each node keeps an auxiliary variable         and updates it by local 
computations on                   and local communications with its neighbors

by letting



Slow Convergence of Distributed Gradient Descent

 Assume                    , then we have

At the minimum, we have                                . However, we often have  

So we should let 

 Slow           convergence rate due to the diminishing stepsize, even for

smooth and strongly convex problems. The same with SGD

 Can we expect faster convergence rate? Yes, by gradient tracking



Gradient Tracking

 Each node keeps an auxiliary variable           as the descent direction 

The first step gives                                    , so if we have                                 and 

 Compact form

, then we have                                           , so the second step 
approximates gradient descent



Gradient Tracking

Theorem: Suppose that each         is convex and smooth, then for GT we 
need

Iterations to find x such that 

Theorem: Suppose that each         is strongly convex and smooth, then for GT 
we need

Iterations to find x such that 



Accelerated Gradient Tracking
 Combines gradient tracking with accelerated gradient descent



Accelerated Gradient Tracking

Theorem: Suppose that each         is convex and smooth, then for Acc-GT we 
need

Iterations to find x such that 

Theorem: Suppose that each         is strongly convex and smooth, then for 
Acc-GT we need

Iterations to find x such that 



Accelerated Gradient Tracking

 Complexity comparisons:

 The iteration complexity of accelerated gradient tracking combined with 
Chebyshev acceleration matches the lower bound. So it is optimal



Accelerated Gradient Tracking

 Other accelerated algorithms for distributed optimization

• Accelerated Dual Ascent

• Accelerated Primal-Dual Method



Conclusions and Take Home Messages

 Accelerated gradient descent is the theoretical fastest first-order algorithm 
for unconstrained convex optimization

 Accelerated algorithms always perform much faster than non-accelerated 
algorithms in practice. Just use it.

 Accelerated gradient descent has been successfully extended to stochastic 
optimization and distributed optimization

• Huan Li, Cong Fang, and Zhouchen Lin, Accelerated First-Order Optimization Algorithms 
for Machine Learning. Proceedings of the IEEE, 108(11):2067-2082, 2020.

• Zhouchen Lin, Huan Li, and Cong Fang, Accelerated Optimization in Machine Learning: 
First-Order Algorithms. Springer 2020.
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Thanks for your attention!


