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Outline

» Optimization in Machine Learning
» Accelerated Gradient Descent for deterministic optimization

» Accelerated Gradient Descent for stochastic optimization

» Accelerated Gradient Descent for distributed optimization



Focus of This Talk

» First-Order Optimization Algorithms
* Not higher-order algorithms, such as Newton’s method

» Accelerated Algorithms

» Convex Optimization

* Not nonconvex optimization

» Widely Used in Machine Learning

* Not control, finance



Machine Learning
» Machine learning is one of the fastest-growing areas.
» Goal

« Extract meaning from data: understand statistical properties, learn
important features and fundamental structures in the data.

« Use this knowledge to make decisions or predictions about other data.

» Optimization is at the heart of machine learning

Machine Learning = Representation + Optimization + Evaluation

* Most of the machine learning problems are, in the end, optimization problems.



[vpical Setup

> After cleaning and formatting, obtain a data set of n objects (a;, y,)
* Vectors of input features: a;,j = 1,2, ...,n

 Outcome y; for each feature vector

» The outcomes y; could be:
« areal number: regression.

* alabel indicating that a; lies in one of M classes (for M = 2): classification.

* no labels (y; is null), e.g., clustering: partition the a; into a few clusters.



Fundamental Machine Learning Task

» Seek a function ¢(-, ) parametrized by x that
* (training) approximately maps a; to y; for each j in the training set:

» (testing) use the model to predict the output on new inputs.

» Example of prediction functions

* Highly non-linear neural network e | (o 2602

» Training: optimization comes into play.

« Compute the parameter x which explains at best the data.



[raining

» Typically, the training phase is formulated as an optimization problem

mm—ZE (aj,x),y;) + AQ(x)

rERP N,

» Loss function I(z, y): measure of the mismatch.
» Interests of the regularization term

» avoid over-fitting on known data to better generalize to new data.

» Practical consequences for training

try to find (quickly) solutions.



Properties of Optimization Problems in Machine Learning

» Recall the optimization problem in machine learning

mm—Zf (aj,x),y;) + AQ(x)

rERP N,

» High dimension: p is large.

« Millions of weights in deep neural network

» First-order algorithms, not higher-order algorithms
» Large data: n is large

e 1,281,167 training images in ImageNet

« Stochastic algorithms and distributed algorithms



Basic Introduction to Convex Optimization

» Recall that training phase is formulated as an optimization problem

min f(x)

r ERP
» Convex formulations are often tractable and efficient in practice.

» Nonconvex formulations are more natural, but harder to solve and analyze.

Convex function Non-convex function
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Basic Introduction to Convex Optimization

» Convex function

« Afunction f(x) is convex if forany x,vy € dom f
and any « € [0, 1],

flaz + (1 —-a)y) < af(x)+ (1 —a)f(y)
* Property

fly) = f(2) + {(Vf(x),y —x)

We assume that f(x) is differentiable
such that V f(x) exists.

x”is the global minimizer of f(x), if and only if

Vflz*)=0



Basic Introduction to Convex Optimization

» Strongly convex function

« Afunction f(x) is strongly convex if forany =,y € domf and any a € [0, 1],

La(l—a)lly - all® + flaz + (1 - a)y) < af(z) + (1 - ) f(y)

* Property

) = f(@) +(Vf(@),y—2) + Slly —all

« The minimizer is unique



Basic Introduction to Convex Optimization

» Smoothness

* From Taylor’s theorem, for some z we have

f(y) < f@) +{Vf(x),y —a) + Sy —2) V(2)(y — 2)

« Using that v"72f(z)v < L||v||? for any v and z, we have

1
2

12 5 If{’ﬂ + VE(x)T(y-x) +I[UE]III3..'-:-;II?| $

F(5) < @) +{VF(@)y —2)+ 5y — o]

» Global quadratic upper bound on function value

* Another form:

IVf(y) = Vf(@)| < Llly — |
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Gradient Descent

» Consider the basic problem min, f(x).

» We have the upper bound

f) < Flow)+ (VHe)y—ai) + 5y — o
2
— 5 VAP

1
Y — Tk zvf(l‘k)

|
» treating x; ., as a variable that
minimizing the right side gives

1

Thil = Tk — sz(xk)

* every iteration is inexpensive

— ) +=

» does not require second derivatives

f(x)|

L — I \xk

a4 Guaranteed
i| Progress ’/

/!
Fs
!

~ H -
“1!-“

Xe+1




Convergence Rate of Gradient Descent

Theorem: Suppose that the function f(x) is convex and smooth, then for GD
we have

x L||zo — a*||* 1
fonn) = f@') € Toamse = 0 (z)

» We say the convergence rate of gradient descent is 0(%) —e=k =

!
k
> Equivalently, to find an € accurate solution z such that f(z) — f(x*) <€,

1
we need O(E) iterations. We say the complexity of gradient descent is O(l)
€

M| =



Proof of the Convergence Rate

Recall that we assume the convexity property of
fy) =2 f(z) +(Vf(z),y — z) (1)
and the smoothness property of
i ;
fl) < £(@)+ (VI @)y = 2) + 5y - 2l @

Gradient descent iterates as
1
Thtl = Tk — va(ﬂfk.] (3)
Proof. 1t follows that
- | L ,
HZe1) = flze) + (V(Tk), Trr1 — r) + §||ﬂ-'m1 — k||

=f(xg) + (Vf(zr),z — z) + (Vf(xp), 21 — ) + §||:1:k.+| — x|

I:]:I. I . 2_2 . . _ 2
< F(@) + (VI (r), 2k — ) + 5 lziss — 2l leer =2l =2 @k =2 Bt = 2 + B = 2]

" . = l@rr1 = 2) = (@rsr — 2)|* = Jlae — 2|
Zf(i') — L {i‘m 1 — gy Tl — if*} + §||IA~.+1 - iﬂ:s~||2

L & v - L &
=f(x) + 5 (llzx — z)* = ||zker — z))* = [|@pgr — zel?) + §||-?7k~+| — x|
L . L "
=f(@) + Fllzx = 2|* = 5 ks — 2



Proof of the Convergence Rate

Recall f(zx41) < f(x) + §llow — o)) — e — 2%

Letting = = xy, we have f(zpi1) < flow) — £|lzesr — zil|? £ f(xk). So we have

flzer1) < flxe) < floe_1) < --- < flxo). 4)
Letting x = x*, we have
4 v * L * || - L * |12
flaxg) = F(2") < Sllex — 272 = S lexe — 2%

Letting kb = 0, 1,--- , K, we have

| L i 5
Hlzwxp) —Flz*) = E|'JJK—1' I = 3||1'K+1 — =
L S
f{iK]'_f{-{"?i:E”JK—l_I ||'—§||u<—i II?
ais ok s G
fleria) <= flz"y= §|-JFH—2—J' |12 - E|?IH—1 —a*|*

. L enn L .
J@) = (@) € Slwo —a*P = Zlay — a*

Summing up, we have

”:I"[J —x" 52.

b | b

= L L
> @) = (K + Df@a") < Slloo - 27 = S o — 27|17 <
k=0 -

From {4), we have

3 - 3 * L -
(K +1)f(rry1) = (K +1)f (") < 3 lleo — 2"
Dividing both sides by K + 1, we have
it _ o < : Pn — - :2.-
f(@xy1) f{l"]_g—{hp_‘_uﬂﬂu x



Convergence Rate of Gradient Descent

Theorem: Suppose that the function f(x) is strongly convex and smooth, then
for GD, we have

f(xpq1) — fx¥) < (1_ ”)k Lljzo — z*||? _0 ((1#)1%»)

L 2 L

» We say the convergence rate of gradient descent is O ((1 - %)k)

> Equivalently, to find an € accurate solution x such that f(x) — f(z™) < e,

we need O (% log %) iterations. We say the complexity of GD is 0O (£ log %)
U

4 k 4 O, —r)=—T ) A 1
(1— %) =€ = klog (l— %) = loge l g“:}) —kr% = loge :>k:% :log; =Sl



Summary of the Complexity of Gradient Descent

Method

Strongly convex

Non-strongly convex

Gradient Descent

O (% log %)

O (<)

» Can we hope to further accelerate convergence? Yes

» Heavy ball method

» Accelerated gradient method



Heavy Ball Method with Momentum

» Fundamental idea:

» Exploit information from the history (i.e. past iterates)

* Use momentum to predict the trajectory

» The heavy ball method

Tri1 = e — Oév_f(ﬂik) + B(mk — SUk_l)

N 7
N

momentum

Search direction at iteration k depends on the latest gradient VF (x;) and also
the search direction at iteration k — 1,



An Intuitive Comparison

heavy-ball method



Convergence Rate of the Heavy Ball Method

Theorem: Suppose that the function f(x) is strongly convex and smooth, and
moreover, it is twice continuously differentiable, then for HB, we have

f(@r41) — f(2%) <O ((1 - g)k)

Theorem: Suppose that the function f(x) is convex and smooth, then for HB,

we have 1
fan) - £ <0 (5)

» HB Converges faster than GD only for strongly convex problems




Summary of the Complexity Comparisons

Method Strongly convex Non-strongly convex
Gradient Descent O (% log %) O (%)
L 1 T
heavy-ball O (/£ 10g 1) O (L)

» Can we further accelerate convergence for general convex problems? Yes

» Accelerated gradient method



Accelerated Gradient Descent

» Also use the history information and momentum

Or(1 — 0k_1)
Or—1

Yk = Tk + (xk — Tr—1)

1
Tt =p— zvf(yk)

L H407 07, 1 —f |

. NG
where 6, is computed by ¢, =
and ro =7_1, 0y =1

,which is obtained from —z— = 3
2 k k—1

» Recall the heavy ball iterations

Tyl = Tk — QVf(xk) + B(wk — xk_l)
» Different momentum



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function f(x)is convex and smooth, then for AGD,
we have

f(@rs1) — f(2") <O (k—lz)

» The convergence rate of accelerated gradient descent is 0 (%) k=

€

» Equivalently, the complexity of accelerated gradient descentis 0 ( 1)

» Recall that the convergence rate of gradient descent is 0 (%) (or o G) )



Numerical Comparisons

f(z®) —

m
minmize log Z exp(a; x + b;)
i=1

— gradient
- = FISTA

50 100 150




Proof of the Convergence Rate

Recall that we assume the convexity property of

fly) = flz) + {(Vf(z),y— ) (1)

and the smoothness property of
: L .
) < f(@) + (Vf(z)y =)+ S lly — =l 2)
Proof. It follows that
{z:l .L ]
flanea) < Flo) + (VF )y zhen = o) + S lowen = vl
=f(y) + (VI ),z — ) + (V) 2r1 — 2) + 5 ll2ees — wxll”

(1) i :
< F{z) + {Vflyr), Tr4r — ) + E||J-'k+l =

Trr1 — v

L
=f(-'1"} — L{Tr41 — Yry Tt — T} + E

. i
=f(@) + L (@r41 — Y6, — Y1) — L (Brs1 — Yoo Trr — Yi) + 5 [1Z041 - i)

L
=f(x) + L(Tkt1 — Y. T — Y} — §||-1?£-—1 — x|

Letting r = x},, we have

I, :
f(xr41) € flze) + L{xpsr — Yk, Tk — Y} — §||¢‘-'Jr+l — ]|

Letting x = =¥, we have

. 4 L
F(Tet1) € J(2°) + L(Tps1 — Yo T — Yi) — E”Ik+1 — el



Proof of the Convergence Rate

Multiplying the first inequality by 1 — @, multiplying the second by #;, adding them together, we

have

florgr) — (1 —0i) f(ag) — Op f(2")

L
Flawi) < flow) + L (e — v 26— Yr) — El\ﬂ?kﬂ - uill?

L
flerar) < f@) + L{@p — yo, z° — yi) — §||$k+1 — il

: " L .
SL{(Tp41 = Yk, (1 = Ok )k + O™ — i) — E||33.l.-.+1 — yxl?

f_ﬂ

L * ||z *
) (lye — (1 — Or)zi — Oxz™||? = l|Tksr — (1 — Ok} — Bkz™||® + ||zrtr — will?) — §||$k+1 — yill?
L w16 NP I8 w16 | . Joser — sl
2 |0 ;. 0;. ;. + 2{Tr+1 — Yrs Yk — (1 — Op)zs — Oz™)
. Tl 1 -85 B (1—65_1) +llye - (1_0k)xk_0kx*u2
Denoting zp.41 = TR 7 from yx =z 4+ T(I*‘ — Ty—1), We have [ Zksr — (1 — O )z — O™ ||?
ye 1 — 0 o =Tk 1 — 04 (2 — Tr_1) 1 — 6 .
o, o k =0, o, ok Th—1 ok
1 +1—t9;.;_1 1-26, 1—-6,_4
— . — Ty — —————— T
B -1 Oy, : Or—1 ek
_:r:k —1_9k_lff s
T
So we have
flzrsr) = f(2*) = (1 = k) (f(zx) — f(27))

=f(Trt1) — (1 — Ox) f(zr) — O f(z*)

Lo?

Lk ||y —
<H -

5 L#? ,
?— 2 kg — 2|

2



Proof of the Convergence Rate

Dividing both sides by #? and using *-7% = !

7P l,wehave
fler) — fla*)  flae) — f@*) _ fl@re) — f(@7) (1 —0)(f(a) — f(27))
o7 0% 0% 0%
E : L y
<5 lak =@ l* = 5 llanser — 2"
Summing over k = 0,1, - , K and using Eﬁl_ = 1—;}& = 0 with #y = 1, we have
J(@ry)— flz*)  flarkq)—Fflz*) flze)—f(=*) L L
7 = S e Pl
K K 1
On the other hand, from ‘;.f*' = z— and 6y = 1, we have
E k—1
2
L 4~ 1 AL (L1 1
gz 0z — 62 6 4 0, 2
=}_1 1 ljﬁ’+1{1$0{2
oy B 2 ° 2 "G g ¢ T KD
So we have
L 2f

Flxr) = F(x™) <

9;%{ * |2
20 — T O oo B | ||
o 20— 2| < i lzo = o7



Accelerated Gradient Descent

» For strongly convex problems,

VI
Yy = Tk + \E+\/ﬁ(£€k—fﬁk1)

1
$MJ:%m—jZVf@w

» Recall the iterations for nonstrongly convex problems

0r(1 — 0r_1)
Or—1

Y = Tk + (xr — Tr—1)

1
Tt =p— zvf(yk)



Convergence Rate of Accelerated Gradient Descent

Theorem: Suppose that the function f(x) is strongly convex and smooth, then
for AGD, we have

Flarn) — f(z*) <O ((1 . g)k>

k
» The convergence rate of accelerated gradient descent is 0O ((1 - \/@ )

» Equivalently, the complexity of accelerated gradient descent is o (\/%log 3)

» Recall that the convergence rate of gradient descent is O ((1 — ﬁ)k

(or O (£ log 1) complexity )
7 €



Summary of the Complexity Comparisons

Method

Strongly convex

Non-strongly convex

Gradient Descent

heavy-ball

Accelerated Gradient Descent

O (% log %)

O (<)

E

O (%)




Another Accelerated Graadient Descent

» Algorithm iterations: » Useful in the extension to composite
—(1—6 0 optimization, stochastic optimization,
yr = (1 — Ok )xg + Oz and distributed optimization
1
k41 = 2k — = V.S (U
; o Vo)
Try1 =(1 — Op)xk + Orzp41
T = (1 —60i)x 0.2
k1 = (1= Ok)zk + Ok 2k —(1— O + O — £V F ()
» Equivalent to the previous one: =Yk — ivf(yk)
1 :(1 — 9;9).1?;9 + 01z
Or(1 — Or_1 "
Y = Tk + ( 7 ) (@ — Be—q) —(1—9k)xk+9kx’“_(1;k9’“1)“3’”
k—1 -1
1 4 O (1 — le)xk - 0x(1 - le)xk
Or_1 Or—1 !
Tht1 = Yk — Evf(yk) : :



Another Accelerated Gradient Descent
» For strongly convex problems

yr = (1 — O0p)xx + Oz

8

1 176"
21 = o % (Zk + %yk = %Vf(yk))

Tpa1 = (1 —O0p)zk + Opzii1

» Not equivalent to the previous one

VI~ /i
VL + /1

Y = Tk + (xr — Tp—1)

1
Thi1 = Yk — zvf(yk)



Lower Bounds

» Give the possible fastest convergence rate among all first-order algorithms

» No first-order algorithm can be faster than the lower bound

» An algorithm is optimal if its convergence rate equals to the lower bound

Theorem: There exists a special convex and smooth function f(x) such that
for any first-order algorithms satisfying

xy, € Span{zo, Vf(xo), 21, Vf(x1), - ,26-1, Vf(xrp_1)}
we have

) 31
flxr) — f(z*) > 32K 1 1)

3 llwo — ™|

» Recall the upper bound of AGD:

f(@pq1) — f(27) <O (ﬁ)



Lower Bounds

» Give the possible fastest convergence rate among all first-order algorithms
» No first-order algorithm can be faster than the lower bound

» An algorithm is optimal if its convergence rate equals to the lower bound

Theorem: There exists a special convex and smooth function f(x) such that
for any first-order algorithms satisfying

xy, € Span{zo, Vf(xo), 21, Vf(x1), - ,26-1, Vf(xrp_1)}

we have 37 5 If we can find an algorithm such that
* *
fleg) — f(z7) > Xo— X C
(ZK) () 32(K + 1) | | flaw) = f(=*) < 5
for any convex and smooth function f.
» Recall the upper bound of AGD: Then for the special f in the Theorem,

we have
f@r) — f(2") <O (—) 3Ll — oI

e
k? 32k 112 = flaw) = f(27) <



Lower Bounds

» Give the possible fastest convergence rate among all first-order algorithms

» No first-order algorithm can be faster than the lower bound

» An algorithm is optimal if its convergence rate equals to the lower bound

Theorem: There exists a special convex and smooth function f(x) such that
for any first-order algorithms satisfying

xy, € Span{zo, Vf(xo), 21, Vf(x1), - ,26-1, Vf(xrp_1)}
we have

) 31
flzr) — f(x¥) = 32(K+1)2|

» Recall the upper bound of AGD: e =2y — )
. 1 ‘asgzml—an(:m)—l-[)’(m—ro)
fawn) = 1) <0 (33) :

Zip = Tp—1 — oV f(Zr-1) + B(Tx—1 — Tx—2)



Lower Bounds

» For strongly convex problems:

Theorem: There exists a special strongly convex and smooth function f(z)
such that for any first-order algorithms satisfying

T € Span {-CCOa Vf(iC()),iEl, Vf(l‘l), oty Lk—1, Vf(l?k_l)}

we have

w5 H
f(&’?K)—f(ir)Ez VLt i

2\/7 2K 21K

L H * *

— 1= lag — |2 > & (1 ~ 2, /ﬁ) g — 2* |2
2 vL+ /i 2 L

(‘/E—“/—E)QK 2o — 2|12

» Recall the convergence rate of AGD:

e 850



Summary of the Complexity Comparisons

Method Strongly convex Non-strongly convex

Gradient Descent ( L log = ) O (L)

£

(VEwst) | o)

heavy-ball

@,
Accelerated Gradient Descent O (4 / L = log E) O (1 /%)
O(‘/%log%) O( %)

Lower Bounds

» The complexities of accelerated gradient descent match the lower bounds

» Accelerated gradient descent is the optimal first-order method

It cannot be improved!




Full Gradient: Does It Make Sense?

» The methods above, based on full gradients.

» Recall that in machine learning, the optimization problem is often

Hel%RI}D ZE (@ % )+ AQ(x ij

» They are less appeallng when n is large. To calculate

1 n
— " ;ij(a:)

generally need to make a full pass through the data.



Stochastic Gradient Descent

» Fundamental idea:

« Sample, in each iteration, one or several gradients as an estimator of the full gradient

» Stochastic gradient iterations:

Choose jr € {1,2,--- ,n} uniformally at random

Tr+1 = Tk — oV [, (Tk)

» Step size:

O(1) for strongly convex problems
ap = i
O(7osv=) for nonstrongly convex problems

» Compare with gradient descent
Lk+1 = Tk — OéVf(IEk) =T — % Z ij(:}’}k)

=



Stochastic Gradient Descent

» Vi (xx) is aapproximation for V'f (x)
* Unbiased:

E;. [V f (zx)] Z Vfi(zy) = Vf(ag)

. %
* The variance will never go to zeroevenif Ty — T

E;, [V (o) = VH@oIP] <o

» Slow convergence rate due to the variance

) for strongly convex problems
) for nonstrongly convex problems

T =

Blf(o0)] - /) < { Gk

%I



Stochastic Gradient Descent

» Compare between gradient descent (GD) and stochastic gradient descent
(SGD)

Method | Iteration complexity | Per-iteration cost | Total computation cost
GD O(%]og%) n O(%]og%)
SGD o (22) 1 O (22)

« SGD is more appealing for large n

» Can we expect faster convergence rate?

Yes, by variance reduction



Variance Reduction

» Fundamental idea:

» Keep a snapvector w after every n SGD iterations, and use

1 n
Vi =V (w) = Vi (w) + =3 Vf(w)
j=1
as the descent direction:

Th41 = T — AV

 In each iteration, we only compute Vf; (zx) and Vfj, (w) .%Zij(w) is computed
j=1

after every n SGD iterations. So the cost in each iteration is the same with SGD



Variance Reduction

» V. is an approximation of the full gradient

 Unbiased:
1 T 1 T
E;[Vil =~ ) (ijk (xx) = Vi (w) + =3 ij(w)) Z Vfi(wk) =V f(w)
Jk=1 j=1
 The variance reduces to zero
Ej, |V — V@)l Vi — Vf(xy)
| | . when
:Ejk vfjk (:Bk) == vf_jk (’UU) -+ a ; Vf,(w) — E ; Vf?(a:';v) Ik .

<E;, [IV/j, (zx) — V5, w)|* < Ej L[l — w|® = L2k — w]?
where we use the following inequality in the third step

E[lla — E[a]||*] = E[l|al|* + |[E[a]||* — 2 (a, E[a])] = E[[lal]*] — [[E[a][|* < E[]|al|"]



Variance Reduction ) )
%Ej(})m ) VW

o =1

» V. is an approximation of the full gradient
* Unbiased:

n

E;, [Vi] = % >

Jr=1

(ijk (@) = V() + 3 ij(w)) Z Vi) = V(@)
j=1

 The variance reduces to zero

Ej, |V — V@)l Vi — Vf(zs)
| : when
=E;, ||V i, (@x) — Vi, (w ZW, ;;W(m e 570

<Ej, |V fi (k) = V fi,, (w)[|* < EjkLzHafk — w||* = L?|jzy, — w|?
where we use the following inequality in the third step

E[lla — E[a]||*] = E[l|al|* + |[E[a]||* — 2 (a, E[a])] = E[[lal]*] — [[E[a][|* < E[]|al|"]



Variance Reduction

» V. is an approximation of the full gradient
* Unbiased:

n

E;, [Vi] = % >

Jr=1

(ijk (@) = V() + 3 ij(w)) Z Vi) = V(@)
j=1

 The variance reduces to zero

Ej, |V — V@)l B, [IVi ~ V@] - o
2 when
1 T . w
=Ej, ||V fi.(@k) = Vi, (w Z V fi(w - > Vi) L
j=1

<Ej, |V fi (k) = V fi,, (w)[|* < EjkLszk — w||* = L?|jzy, — w|?
where we use the following inequality in the third step

E[lla — E[a]||*] = E[l|al|* + |[E[a]||* — 2 (a, E[a])] = E[[lal]*] — [[E[a][|* < E[]|al|"]



Stochastic Variance Reduction Gradient

» SVRG iterations:

Choose j, € {1,2,--- ,n} uniformally at random

Vi =V fi(zr) = VI, (wg) + V f(wg)
Lk+1 — LTk — O{V;{;

{ xr  with probablhty =
Wk+4+1 —

wy  with probability -1

Theorem: Suppose that the each s;(z) is convex and smooth, f(x)is strongly
convex, then for SVRG, we need
(( i)=3)

lterations such that E[||z. — 2*||?]




Stochastic Variance Reduction Gradient

» Complexity comparisons:

Method Iteration complexity Per-iteration cost Total computation cost
GD O(%log %) n O(%log%)
SGD o (27) 1 o (%)

SVRG | O ((n+%£)log?) 1 O((n+%)logt)

» SVRG Combines the advantages of GD and SGD

» The same convergence rate with GD when n < ;
» The same cost per iteration with SGD

* Lower total cost than both GD and SGD

» Other VR methods
» Stochastic Average Gradient (SAG), Stochastic Dual Coordinate Ascent (SDCA), SAGA



Accelerated Stochastic Variance Reduction Gradient

» Combines SVRG with accelerated gradient descent

Choose j;, € {1,2,---

,n} uniformally at random

Y = (1 — )i + Oz

Vi = vf.?k (xk) - vf]k (wk) ax vf(wk) 1
IL'],H_l:LEk—Q{VIC fk+1 — 1_|_ o (k_{—% k—%vf(yk)
| x, with probablhty =

L = { wy  with probability -1 ‘U/ Thp1 = (1= )xk + Ok

Yk = thzg + 02wy + (1 — 01 — O2)xy,

Choose ji € {1,2,--- ,n} uniformally at random

Vi = vfjk: (yk‘) - vfjk (wk) + vf(wk‘)

1 QL
k41 = -2y
k+1 1+(;_?(91yk‘|—2k o k-)

Th+1 = 012841 + Gowi + (1 — 01 — O2)xy,

wy, ~ with probability 1 — =

{ xp  with probablhty =
Wg41 =

)



Accelerated Stochastic Variance Reduction Gradient

Theorem: Suppose that the each f;(z) is convex and smooth, f(x)is strongly
convex, then for accelerated SVRG, we need

(2

lterations such that E[||z, — 2*||?] < e

» Recall that the complexity of SVRG is O ((n + %) log 1\ o0 /™ <y %
, €/

» We always have (n+ \/%) log% < (n+ ﬁ) log% , SO the accelerated SVRG is

always not worse than SVRG. The strict inequality holds when » < %

L .
> When n > =, we have (m,/%) log - —nog - = (n+ )10+, @cceleration takes no effect



Accelerated Stochastic Variance Reduction Gradient

» Complexity comparisons:

Method [teration complexity Per-iteration cost Total computation cost
o | o(bu) N IO
o2 2
SGD O (%) 1 o (22)
SVRG | 0 ((n+ ) o ) : O ((n+ &) tost)
AceSVRG | O ((n+,/2L)10g 1) | O ((n+/2E) 10g 1)
nlL 1
Lower bound \ \ @) ((n 2 \/T) log E)

» The iteration complexity of accelerated SVRG matches the lower bound. So

it is optimal

» Acceleration has no help to improve SGD



Accelerated Stochastic Variance Reduction Gradient

» Other accelerated algorithms for stochastic optimization

» Accelerated Stochastic Coordinate Descent
* Accelerated Stochastic Dual Coordinate Ascent

* Accelerated Stochastic Primal-Dual Method

* A Universal Catalyst Acceleration Framework



Distributed Optimization

» Distributed optimization has broad applications in machine learning

» Large scale training data distributed among a group of servers

« Data are generated and stored by the mobile users

» Typical setup

. 1«
- Consider problem L flx) = = ; fil®)

« The local function f;(x) represents the data on node i. It is only available to node i.

* The nodes are connected by a network



Distributed Optimization

» Communication network

» Directed or undirected. We only consider undirected network here

» The network is described by a mixing matrix W € R™*™ to characterize the
connectivity and the weight of the communication edges

1. W; ; > 0 if and only if nodes i and j are connected or i = j. Otherwise, W,; ; = 0.

2. Wl=1and1TW =17,

* One example
1

1+max{degree(i),degree(;)}
Wij =< 0 if < and j are not connected

I_ZTW’&'?’ if?:=]

if 7 and j are connected and 7 # j

- The largest singular value of W: 1 = 1 ; The second largest singular value: 09 < 1



Distributed Gradient Descent

» Each node keeps an auxiliary variable () and updates it by local
computations on V f;(xz(z)) and local communications with its neighbors

(1)1 = E Wix(j)e — axV fi(x(i)r)
JEN;
» Compact form

Xp+1 = Wxp — arV f(xg)

by letting
[ 2(1) ] [ VA(z(1) 7

| i) | |V fon((m))



Slow Convergence of Distributed Gradient Descent

» Assume (i), — x*, then we have

T(1)ky1 = Z WZJI e — axV fi(x(i)r)

jEN;
=r* =z — oszf?,( *)
At the minimum, we have vyf(z Zw (z*) =0 . However, we often have Vf;(z*) # 0

So we should let a; — 0

1
> Slow O(E) convergence rate due to the diminishing stepsize, even for

smooth and strongly convex problems. The same with SGD

» Can we expect faster convergence rate? Yes, by gradient tracking



Gradient Tracking

> Each node keeps an auxiliary variable s(i); as the descent direction

Z Zw Z 3wy —ZW@(;E(@)A,,,)

=1 =1 jEN;

(i) = Z Wiis()k—1 + Vfi(x(i)r) — Vfi(z(i)p—1) -$S wtn jjw.m..,
g Z “Zu ng
k+1 Z ngfﬂ ko O{S( )k :Zg A‘—I*Zv.fi T (i)k-1)
]GN j=1 i=1

S s(ilo = 3 Vhila()o) = Y sl = Y. VA
i=1 =1 i=1

1=1

The first step gives Z )k = Zij , so if we have s(i)r — s(j)r — 0and

z()k — z(j)r — 0, then we have s(d) = — vaj (i)x), SO the second step
approximates gradlent descent i

» Compact form

S = WSk_l T Vf(Xk) — Vf(Xk_l)
X1 = Wxp — asg




Gradient Tracking

Theorem: Suppose that each f;(») is convex and smooth, then for GT we

need
? (6(1 —Laz)z)

lterations to find x such that f(z) — f(z*) < ¢

Theorem: Suppose that each f;(2) is strongly convex and smooth, then for GT

we need
L 1 1
0 «J ta —02)2) ng)

lterations to find x such that f(z) — f(z*) < ¢




Accelerated Gradient Tracking

» Combines gradient tracking with accelerated gradient descent

s = Wsp_1+ Vf(Xk) — Vf(X]ﬂ_l) _|_ Ye = (1 o 9]3).5(3]5 T szk

Xk+1 = I/VX]C — (SL

*U G 1+

Trt1 = (1 — O)zk + Or2zr41

1

Lo
Ok

(

Yi = 0pzp + (1 — O)xp,
s, = Wsp_1 +VIf(yr) = Vf(yr-1)

| Q
Z41 = (W (u—yk £ Zk) — —Sj

1—|—% 0.

Xkt+1 = kak_H -+ (1 — Qk)WXk

(@7
0%

)

jynes

2e+ Y — - Vf

Ok

«

O

()



Accelerated Gradient Tracking

Theorem: Suppose that each f;(«) is convex and smooth, then for Acc-GT we

need
1 L
L ((1 — 09)?2 e)

lterations to find x such that f(z) — f(z") <€

Theorem: Suppose that each f;(2) is strongly convex and smooth, then for

Acc-GT we need
1 L 1
O ((1 o) \/Zlog e)

lterations to find x such that f(z) — f(x") <e




Accelerated Gradient Tracking

» Complexity comparisons:

Method

Strongly convex

Non-strongly convex

Gradient Tracking

Accelerated Gradient Tracking

Accelerated Gradient Tracking+
Chebyshev acceleration

2] (CEmm—m—)

O (Gmmgrsy/Elog )
0(\/M1—10g 1)

& (6{1—L02)2)
o (\/arksm)

Communication Lower Bounds

O (\/aertap o8 t)

0 (Varte)

» The iteration complexity of accelerated gradient tracking combined with
Chebyshev acceleration matches the lower bound. So it is optimal



Accelerated Gradient Tracking

» Other accelerated algorithms for distributed optimization

* Accelerated Dual Ascent

* Accelerated Primal-Dual Method



Conclusions and Take Home Messages

» Accelerated gradient descent is the theoretical fastest first-order algorithm
for unconstrained convex optimization

» Accelerated gradient descent has been successfully extended to stochastic
optimization and distributed optimization

» Accelerated algorithms always perform much faster than non-accelerated
algorithms in practice. Just use it.
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Thanks for your attention!



