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Composite optimization

I Composite optimization problem

F ? = min
x∈Rd

F (x) := f(x) + h(x)

– f : convex and smooth
– h: convex (potentially non-smooth)

I Examples

– l1-regularization (e.g., compressive sensing) to promote sparsity

min
x∈Rd

f(x) + ‖x‖1︸ ︷︷ ︸
h(x):l1norm

– TV -regualization (e.g., image recovery) to promote?

min
x∈Rd

f(x) + ‖x‖TV︸ ︷︷ ︸
h(x):Total Variation
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Proximal operator

I Proximal operator

proxh (x) := arg min
z

{
h(z) +

1

2
‖z − x‖2

}
for any convex function h.

I Why consider proximal operators?

– well-defined under very general conditions (including nonsmooth
convex functions)

– can be evaluated efficiently for many widely used functions
(regularizers)

– provide a conceptually and mathematically simple way to cover many
optimization algorithms, including PGD, PPA, ADMM and so on.
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Examples of Proximal Operators

I If h(x) = ‖x‖1, then

proxλh (x) =


x− λ, if x > λ

x+ λ, if x < −λ
0, else

(Soft-thresholding)

I If h(x) = ιX (x) =

{
0, if x ∈ X
∞, else

, then

proxλh (x) = PX (x) (Projection)

I many other examples...
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Properties of Proximal operator

I Firmly nonexpansive

〈proxh (x)− proxh (y) , x− y〉 ≥ ‖proxh (x)− proxh (y)‖2

I Nonexpansive

‖proxh (x)− proxh (y)‖ ≤ ‖x− y‖

Proof of sketch: z1 = proxh (x1) , z2 = proxh (x2)

I x1 − z1 ∈ ∂h(z1) and x2 − z2 ∈ ∂h(z2)
I due to convexity of h, we have{

h(z2) ≥ h(z1) + 〈z2 − z1, x1 − z1〉
h(z1) ≥ h(z2) + 〈z1 − z2, x2 − z2〉

I ⇒ 〈x1 − x1 − (z1 − z2), z1 − z2〉 ≥ 0

I ⇔ 〈x1 − x1, z1 − z2〉 ≥ ‖z1 − z2‖2 ⇒ firmly nonexpansive

I together with Cauchy-Schwarz, we obtain the nonexpansiveness.
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Proximal gradient methods

I Proximal gradient descent

xk+1 = proxγh
(
xk − γ∇f(xk)

)
– alternates between gradient updates on f and proximal minimizaiton

on h
– useful when proxγh (·) is simple to evaluate

I Which is equivalent to

xk+1 = arg min
x

{
1

2γ

∥∥x− (xk − γ∇f(xk))
∥∥2 + h(x)

}

= arg min
x


1

2γ

∥∥x− xk∥∥2︸ ︷︷ ︸
proximal term

+γ
〈
x− xk,∇f(xk)

〉︸ ︷︷ ︸
first-order approximation

+ h(x)︸︷︷︸
regularization
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Linear Convergence of Proximal Gradient Methods

Theorem (Linear Convergence Rate)

Let f be µ-strongly convex and L-smooth. If ηk ≡ γ = 1
L , then

∥∥xk − x?∥∥2 ≤ (1− 1

κ

)k ∥∥x0 − x?∥∥2
where κ := L/µ is condition number; x? is minimizer.

I dimension-free in iteration complexity: need O(κ log 1
ε ) number of

iterations to reach an accuracy of ε.

I slightly weaker than that of unconstrained cases.
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Sublinear Convergence of Proximal Gradient Methods

Theorem (Sublinear Convergence Rate)

Let f be convex and L-smooth. If ηk ≡ γ = 1
L , then

F (xk)− F ? ≤
L
∥∥x0 − x?∥∥2

k

where x? is any minimizer attaining the optimal value of f(x?)

I dimension-free in iteration complexity: need O( 1
ε ) number of

iterations to reach an accuracy of ε

I better than subgradient methods which gives O(1/ε2)

I fast if proxh (·) can be efficiently implemented
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Comparing to gradient methods

I Gradient descent

stepsize rule
convergence

rate
iteration

complexity
convex & smooth

problems
γk = 1

L O(1/k) O( 1
ε )

strongly convex &
smooth problems

γk = 2
L+µ O((κ−1κ+1 )k) O(κ log 1

ε )

I Proximal gradient descent

stepsize rule
convergence

rate
iteration

complexity
convex & smooth

problems
γk = 1

L O(1/k) O( 1
ε )

strongly convex &
smooth problems

γk = 1
L O((1− 1

κ )k) O(κ log 1
ε )
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Numerical example: LASSO

I A LASSO problem (Compressive Sensing)

min
x∈Rd

F (x) =
1

2
‖Ax− b‖2 + ‖x‖1

with i.i.d Gaussian A ∈ R2000×1000, γ = 1/L,L = λmax(ATA)
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Conjugate convex functions

Let f : Rn → R ∪ {±∞} be an
extend-valued convex function.

I Convex conjugate function

f∗(y) := sup
x∈Rn

{〈x, y〉 − f(x)}

where f∗ : Rn → R ∪ {±∞} is the
convex conjugate of f

I Similar to Fourier Transformation

I Useful in primal-dual convex
analysis

Figure: Geometric intepretion
(courtesy to Bertsekas)
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Conjugate convex functions

Examples: f∗(y) := supx∈Rn {〈x, y〉 − f(x)}

I linear function

f(x) := a · x− b → f∗(y) =

{
0, y = a

+∞, y 6= a

I stricly convex quadratic funciton f(x) = 1
2x

TAx with A � 0

f∗(y) = sup
x

{
〈x, y〉 − 1

2
xTAx

}
=

1

2
xTA−1x

I power function (DIY)

f(x) :=
|x|p

p
(where p > 1) → f∗(y) :=

|y|q

q
(where

1

p
+

1

q
= 1)

I when f = f∗? (f = 1
2 ‖·‖

2)
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Properties of conjugate functions

Let f : Rn → R ∪ {±∞} be an extend-valued convex function and f∗ be
its convex conjugate function.

Theorem (Fenchel’s inequality)

For any x, y, we have

〈x, y〉 ≤ f(x) + f∗(y)

When f = |x|p
p , the above reduces to Young inequality. Also,

I f∗ is always convex no matter f is convex or not

I Let f be proper and convex. Then, y ∈ ∂f(x)⇔ x ∈ ∂f∗(y)

I if f is µ-strongly convex, then f∗ is 1/µ-smooth and vice versa.

I Question: when f = f∗∗? (HW)
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Moreau decomposition

Lemma (Moreau decomposition)

Suppose f is closed, proper and convex.
Then, we have

x = proxf (x) + proxf∗ (x)

I key relationship between proximal
mapping and duality

I generalization of orthogonal
decomposition

A special case for a subspace V , we have x = PV (x) + PV ⊥(x)
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Convex optimization with affine constraints

I Consider the problem

min
x∈Rn

f(x), s.t. Ax = b︸ ︷︷ ︸
affine constraint

where f is convex and smooth.

I Can be rewritten as
min
x∈Rn

f(x) + h(Ax)

where h(u) is an indicator function defined as

h(·) =

{
0, if Ax = b

∞, otherwise

I proximal operator w.r.t. h̃(x) := h(Ax) could be very difficult (even
when proxh (·) is simle due to the complication of A)
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Fenchel Duality

I Consider the problem

P ? := min
x∈Rn

f(x) + h(Ax)

whose dual problem is

D? := min
y
−f∗(−AT y)− h∗(y)

where ∗ denotes the (Fenchel) conjugate.
I dual formulation

P ? = min
x∈Rn
{f(x) + max

y∈Rn
〈Ax, y〉 − h∗(y)︸ ︷︷ ︸

:=h(Ax)

}

= min
x∈Rn

max
y∈Rn
{f(x) + 〈Ax, y〉 − h∗(y)} (saddle point formualtion)

= max
y∈Rn

min
x∈Rn
{f(x) + 〈Ax, y〉}︸ ︷︷ ︸
:=−f∗(−AT y)

−h∗(y) = D? (minmax theorem)
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Connection to Lagarange Duality

I Consider the problem

P ? := min
x∈Rn

f(x) + h(Ax)

I Let z = Ax. Then, we have

min
x∈Rn

f(x) + h(z), s.t. z = Ax.

I The Lagarange dual function

g(y) = min
x,z

L(x, z, y) = min
x,z

f(x) + h(z) + yT (Ax− z)

= min
x
{f(x) + yTAx}+ min

z
{h(z)− yT z}

= min
x
{f(x)− (−AT y)Tx}+ min

z
{h(z)− yT z}

= −f∗(−AT y)− h∗(y)

which is exactly the above dual problem

Dual proximal gradient methods 17



Dual proximal gradient methods

Dual proximal gradient methods

yk+1 = proxγh∗
(
yk + γA∇f∗(AT yk)

)
I proxγh∗ (x) can be calculated from the primal I − proxγh (x/γ)

Theorem (Sublinear Convergence Rate)

Let f be µ-strongly convex. If γk ≡ γ = µ
λmax(A)2 , then

D(yk)−D? ≤
µ
∥∥x0 − x?∥∥2
λmax(A)2k

What if A is not full rank? (HW)
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Dual proximal gradient methods

Dual proximal gradient methods

yk+1 = proxγh∗
(
yk + γA∇f∗(AT yk)

)
I proxγh∗ (x) can be calculated from the primal I − proxγh (x/γ)

Theorem (Linear Convergence Rate)

Let f be µ-strongly convex and L-smooth and A be a full-rank matrix
with κA = λmax(A)/λmin(A). If γk ≡ γ = 2Lµ

Lλmax(A)2+µλmin(A)2 , then

∥∥yk − y?∥∥2 ≤ (1− 1

κκ2A

)k ∥∥y0 − y?∥∥2
where y? is the optimum for the dual problem.

What if A is not full rank? (HW)
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Primal representation of dual proximal gradient

methods

I Let xk = ∇f∗(AT yk). This means that AT yk = ∇f(xk)

I By first-order optimality, the above is equivalent to

xk = arg min
x
{f(x) +

〈
AT yk, x

〉
}

Dual proximal gradient methods

xk = arg min
x
{f(x) +

〈
AT yk, x

〉
}

yk+1 = proxγh∗
(
yk + γAxk

)
I {xk} is primal sequence, which is not always feasible!

I Can we approximately solve the sub-problem involving xk?
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A saddle-point formulation

A saddle-point formulation

min
x

max
y

f(x) + 〈y,Ax〉 − h∗(y)

remember how to derive it? (HW)

I KKT conditions {
0 ∈ ∇f(x) +AT y

0 ∈ Ax− ∂h∗(y)

I Can be rewriten as

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
:= F (x, y)

I Key idea: iteratively update (x, y) to solve the above inclusion
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Monotone operator

I a relation T on a set Rn is a subset of Rn × Rn (e.g., set-valued
mapping ∂f := {(x, ∂f(x))|x ∈ Rn})

I relation T on Rn is monotone if

(u− v)T (x− y) ≥ 0 ∀(x, u), (y, v) ∈ T

I Examples

– T (x) = ∂f(x) is monotone
– Skew-symmetric matrix is also monotone[

0 AT

−A 0

]
– Why? (Using the definition)
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Resolvent operator and cocoercive property

I for λ ∈ R, resolvent of relation T is

R = (I + λT )−1

when F = ∂f , the above reduces to proxλf (·)
I We say T is β-cocoercive in G-space if

β ‖Tx− Ty‖2G ≤ 〈Tx− Ty, x− y〉G
I if T is monotone, then R is 1-cocoercive

– suppose (x, u) ∈ R and (y, v) ∈ R, i.e.,

x ∈ u+ λT (u), y ∈ v + λT (v)

– substract to get x− y ∈ u− v + λ(T (u)− T (v))
– multiply by (u− v)T and use the monotonicity of T
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(Generalized) Forward-backward splitting

I Motivated by solving composite problem, e.g.,

find x s.t. 0 ∈ (M + F )x

where M : monotone and F : cocoercive.

I Usually difficult to be solved together

I Examples: min
x

1
2 ‖Mx− b‖22 + ‖x‖1

I Equivalent to finding fixed point of (I − γF )︸ ︷︷ ︸
TF

x ∈ (I + γM)︸ ︷︷ ︸
TM

x

I which can be solved by:{
xk+ 1

2
= (I − γF )xk, (TF : gradient operator)

xk+1 = proxγM (xk+ 1
2
), (TM : resolvent operator)

, separated!

I Since M is monotone and F is cooercive, with proper stepsize γ
⇒ (xk)k∈N converges to x∗
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(Generalized) Forward-backward splitting

I Motivated by solving composite problem, e.g.,

find x s.t. 0 ∈ (M + F )x

where M : monotone and F : cocoercive.

I Usually difficult to be solved together

I Examples: min
x

1
2 ‖Mx− b‖22 + ‖x‖1

I Equivalent to finding fixed point of (I − γG−1F )︸ ︷︷ ︸
TF

x ∈ (I + γG−1M)︸ ︷︷ ︸
TM

x

I which can be solved by:{
xk+ 1

2
= (I −G−1F )xk, (gradient operator)

xk+1 = proxG−1M (xk+ 1
2
), (proximal operator)

, separated!

I G−1F, G−1M is cooercive and monotone in G-space, respectively
(why?), with proper stepsize G ⇒ (xk)k∈N converges to x∗
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(Inexact) Primal-dual gradient methods

I Recall the primal-dual problem

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
0 AT

−A ∂h∗

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the forward-backward splitting, we have([
1
γ
I 0

0 1
τ
I

]
+

[
0 AT

−A ∂h∗

])[
xk+1

yk+1

]
=

([
1
γ
I 0

0 1
τ
I

]
−
[
∇f 0
0 0

])[
xk

yk

]
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(Inexact) Primal-dual gradient methods-cont’

I Which is equivalent to[
xk+1

yk+1

]
=

([
I γAT

−τA I + τ∂h∗

])−1
︸ ︷︷ ︸

(G+M)−1

[
I − γ∇f 0

0 I

]
︸ ︷︷ ︸

G−F

[
xk

yk

]

I and can be rewritten as

xk+1 = xk − γ∇f(xk)− γAT yk+1

yk+1 = proxτh∗
(
yk − τAxk+1

)
I still coupled in xk+1 and yk+1 due to the complication of A

I how can we further avoid the calculation of the inverse of A? note
that it is not always possible to do this in dsitributed settings.
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Efficient Primal-dual gradient methods

I Recall the primal-dual problem

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
0 AT

−A ∂h∗

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the (generalized) forward-backward splitting, we have([
1
γ I −AT

−A 1
τ I

]
+
[

0 AT

−A ∂h∗

]) [
xk+1

yk+1

]
=
([

1
γ I −AT

−A 1
τ I

]
−
[
∇f 0
0 0

]) [
xk

yk

]

Primal-dual gradient methods 26



Efficient Primal-dual gradient methods

I Using the forward-backward splitting, we have[
xk+1

yk+1

]
=

([
I 0

−2τA I + τ∂h∗

])−1 [
I − γ∇f −γAT
−τA I

] [
xk

yk

]
I which can be rewritten as

xk+1 = xk − γ∇f(xk)− γAT yk

yk+1 = proxτh∗
(
yk − τA(2xk+1 − xk)

)
I now x and y is no longer coupled!

I this way allows us to avoid the calculation of the inverse of A

Primal-dual gradient methods 27



Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Distributed primal-dual gradient methods 27



Distributed Optimization with Regularization

I Want to solve the following original problem

min
x∈Rd

1

m

m∑
i=1

fi(x) + hi(x), (P)

– x ∈ Rd: the global decision variable

– fi : Rd → R the cost funciton known only
by the associated agent i.

– hi : Rd → R ∪ {±∞} is a (potentially
nonsmooth) function of agent i.

1

f1(x) + h1(x)
2

f2(x) + h2(x)

3f3(x) + h3(x)

4

f4(x) + h4(x)

Figure: A network model

I Equivalent to solve the problem as follows

min
x∈Rm

f(x) =

m∑
i=1

fi(xi) + hi(xi) s.t. xi = xi, ∀i, j ∈ V,

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum x?.
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Distributed proximal gradient method

I Distributed proximal gradient method (DPGM)

xi,k+1 = proxγhi

 m∑
j=1

wijxj,k − γ∇fi(xi,k)


– γ: the constant stepsize chosen by agents,
– proxγhi : the proximal operator1 of hi with the parameter γ.

I Convergence result (x̄k = 11T

m xk, γ ≤ 1/L):

max{
∥∥∥xk − x̄k

∥∥∥︸ ︷︷ ︸
Disagreement

,
∣∣∣f(xk)− f(x?)

∣∣∣︸ ︷︷ ︸
Optimality gap

} ≤ O(1/k) +O(γ)

– steady state error O(γ),
– need bounded (sub)gradient assumption: ‖∇fi‖ < C

I Only update primal variables; can we do it from dual or even
primal-dual simulaneously?

1proxγφ = argminu
(
φ(u) + 1

2γ ‖u− x‖
2
)
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Distributed Optimization with Regularization

I Recalling the following original problem

min
x∈Rd

1

m

m∑
i=1

fi(x) + gi(x), (P)

– x ∈ Rd: the global decision variable

– fi : Rd → R the cost funciton known only
by the associated agent i.

– gi : Rd → R ∪ {±∞} is a (potentially
nonsmooth) function of agent i.

1

f1(x) + g1(x)
2

f2(x) + g2(x)

3f3(x) + g3(x)

4

f4(x) + g4(x)

Figure: A network model

I Equivalent to solve the problem as follows

min
x∈Rm

f(x) =

m∑
i=1

fi(xi) + gi(xi) s.t. (I−W)1/2x = 0︸ ︷︷ ︸
consensus when null{I−W}=span{1}

,

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum x?.
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Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the (generalized) forward-backward splitting, we have([
1
γ
I L

L 1
τ
I

]
+

[
∂g L
−L 0

])[
xk+1

yk+1

]
=

([
1
γ
I L

L 1
τ
I

]
−
[
∇f 0
0 0

])[
xk

yk

]
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Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as

xk+1 = proxγg
(
xk − γ∇f(xk)− γL(2yk+1 − yk)

)
yk+1 = yk − τLxk
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Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as

xk+1 = proxγg
(
xk − γ∇f(xk)− γL(2yk − yk−1)

)
yk+1 = yk − τLxk+1
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Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as (τ = 1/γ)

xk+1 = proxγg
(
Wxk − γ∇f(xk)− γLyk

)
yk+1 = yk − 1/γLxk+1
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Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as (τ = 1/γ, y′k = Lyk)

xk+1 = proxγg
(
Wxk − γ∇f(xk)− γy′k

)
y′k+1 = y′k − τL2xk+1
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Primal-dual distributed gradient method

ID-FBBS Algorithm

xk+1 = proxγg (Wxk − γ(∇f(xk) + yk))

yk+1 = yk +
1

γ
(I−W)xk+1,

– yk is the dual variable whose sum is maintained at zero.

1. Initialization: ∀ agent i ∈ V: xi,0 randomly assigned;
∑
i∈V yi,0 = 0.

2. Primal Update: ∀ agent i ∈ V, computes:

xi,k+1 = proxγgi

∑
j∈Ni

wijxj,k − γ(∇fi(xi,k) + yi,k)


3. Dual Update: ∀ agent i ∈ V, computes:

yi,k+1 = yj,k +
1

γ

∑
j∈Ni

wij(xi,k+1 − xj,k+1)

4. Set k → k + 1 and go to Step 2.
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Connections to Existing Algorithms

I Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(∇f(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

I Let γyk =
√
I−Wy′k, the above algorithm can be rewritten as

xk+1 = Wxk − γ∇f(xk)−
√
I−Wy′k

y′k+1 = y′k +
√
I−Wxk+1

I Equivalent to applying the Arrow-Hurwicz-Uzawa Method2{
xk+1 = xk − γ∇xL(x,y

′
k)

y′k+1 = y′k + γ∇y′L(xk+1,y
′)

– where L(x,y′) = f(x) + 1
γ
xT
√
I−Wy′ + 1

2γ
xT (I−W)x

2K.J. Arrow, L. Hurwicz, and H. Uzawa, Stanford University Press, 1958
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Connections to Existing Algorithms

I Taking the augmented Lagrangian as follows:

L(x,y′) = f(x) +
1

γ
xT (I−W)y′ +

1

2γ
xT (I−W2)x,

Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = W2xk − γ∇f(xk)− (I−W)y′k (c)

y′k+1 = y′k + (I−W)xk+1 (d)

I Evaluating (c) at k + 1 and k, respectively and eliminating y′ using (d),
simple calculation gives

xk+2 −Wxk+1 = W(xk+1 −Wxk) + γ(g(xk+1)− g(xk))

Let γyk+1 = xk+2 −Wxk+1. Then, we recover

the original AugDGM

{
xk+1 = Wxk − γyk
yk+1 = Wyk + g(xk+1)− g(xk).
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A Unified Primal-Dual Framework

I Design a proper augmented Lagrangian:

L(x,y) = f(x) +
1

γ
xTAy +

1

2γ
‖x‖2B ,

I Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = (I−B)xk − γ∇f(xk)−Ayk

yk+1 = yk +Axk+1

I Properly choose A and B such that consensus can be ensured, we can
easily come up with new distributed algorithms

I What conditions on A,B leads to convergence?
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A Unified Algorithmic Framework

A unified ABC algorithm3

xk+1 = Axk − γB∇f(xk)− yk,

yk+1 = yk + Cxk+1,

– where A,B,C are three weight matrices to be properly defined.

The above unified algorithm subsumes many existing algorithms.

Algorithm A B C

ID-FBBS/EXTRA 1
2

(I + W) I 1
2

(I−W)

NIDS/Exact Diffusion 1
2

(I + W) 1
2

(I + W) 1
2

(I−W)
AugDGM/NEXT W2 W2 (I−W)2

DIGing/Harnessing W2 I (I−W)2

3[Xu et al, IEEE TSP’21]
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Sublinear Convergence Rate

Let Sm be the set of m×m symmetric matrices.

I Assumptions

– Cost function {fi}: L-smooth;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, 0 � A � I,
iii) span{1} = null{C} ⊆ null{I−A}.

Theorem (Sublinear rate for the unified algorithm)

Let {(xk,yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 1

L
, the

algorithm converges at a sublinear rate of

max

{
L
∥∥x0 − x?

∥∥2
k + 1

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖∇f(x?)‖
k + 1

}
,

where η(C) :=
λmin(C)
λmax(C)

denotes the eigengap of the matrix C.
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Some Observations

The convergence rate has the following structure4

max


L
∥∥x0 − x?

∥∥2
k + 1︸ ︷︷ ︸

computation

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖∇f(x?)‖
k + 1︸ ︷︷ ︸

communication


g(x?)=0⇒ O

(
L
∥∥x0 − x?

∥∥2
k + 1

)
︸ ︷︷ ︸

centralized rate

.

I 1/
√
η ≈ the diameter of the network for simple networks, e.g., line graphs

I ‖∇f(x?)‖ encodes the “heterogeneity” of functions; g(x?) = 0 implies

– Case 1: When all agents share common solution, e.g., the
distribution of all local data sets are similar.

– Case 2: When a spanning tree algorithm is employed, e.g, exact
average of local data, e.g., local gradients.

I The algorithm reduces to the centralized one!

4Refer to [Xu et al, AISTATS’20; TSP’21] for more details.
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Linear Convergence Rate

Let Sm be the set of m×m symmetric matrices.

I Assumptions

– Cost function {fi}: L-smooth and µ-strongly convex;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, B2 � I−C,
iii) span{1} = null{C} ⊆ null{I−A}.

Theorem (Linear rate for the unified algorithm)

Let {(xk,yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 2

L+µ
, the

algorithm converges at a linear rate of O(σk) with

σ = max

{
κ− 1

κ+ 1
, 1− λmin(C)

}
,

where λmin(C) denotes the connectivity of the graph.
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Simulation Setting

A Canonical Example of Distributed Estimation

I Overall loss function

F =
m∑
i=1

(
‖zi −Miθ‖2 + λi ‖θ‖1

)
– Mi ∈ Rs×d: measurement matrix
– zi: noisy observation of agent i
– λi: regularization parameter.

I Metropolis-Hastings protocol5

wij =

{
1

2·max{di,dj}
, if (i, j) ∈ E

1−
∑
j∈Ni

wij , if i = j

0, otherwise,

– di: the degree of agent i.

Figure: A random network of 50
nodes

5slightly modified to ensure the positivity.
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Performance Evaluation

Parameter Setting: d = 10, s = 1,m = 50, λi = 0.02, ∀i ∈ V;
Mi ∈ Rr×d: a uniform distribution; Gaussian Noise: N (0, 0.1)
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) Versus Iterations
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