
2021 ZJU-CSE Summer School

Lecture VIII: Distributed Composite Optimizaiton

Jinming Xu

Zhejiang University

August 06, 2021

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

1

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Proximal gradient descent 1

Composite optimization

I Composite optimization problem

F ? = min
x∈Rd

F (x) := f(x) + h(x)

– f : convex and smooth
– h: convex (potentially non-smooth)

I Examples

– l1-regularization (e.g., compressive sensing) to promote sparsity

min
x∈Rd

f(x) + ‖x‖1︸ ︷︷ ︸
h(x):l1norm

– TV -regualization (e.g., image recovery) to promote?

min
x∈Rd

f(x) + ‖x‖TV︸ ︷︷ ︸
h(x):Total Variation

Proximal gradient descent 2

Proximal operator

I Proximal operator

proxh (x) := arg min
z

{
h(z) +

1

2
‖z − x‖2

}
for any convex function h.

I Why consider proximal operators?

– well-defined under very general conditions (including nonsmooth
convex functions)

– can be evaluated efficiently for many widely used functions
(regularizers)

– provide a conceptually and mathematically simple way to cover many
optimization algorithms, including PGD, PPA, ADMM and so on.

Proximal gradient descent 3

Examples of Proximal Operators

I If h(x) = ‖x‖1, then

proxλh (x) =

x− λ, if x > λ

x+ λ, if x < −λ
0, else

(Soft-thresholding)

I If h(x) = ιX (x) =

{
0, if x ∈ X
∞, else

, then

proxλh (x) = PX (x) (Projection)

I many other examples...

Proximal gradient descent 4

Properties of Proximal operator

I Firmly nonexpansive

〈proxh (x)− proxh (y) , x− y〉 ≥ ‖proxh (x)− proxh (y)‖2

I Nonexpansive

‖proxh (x)− proxh (y)‖ ≤ ‖x− y‖

Proof of sketch: z1 = proxh (x1) , z2 = proxh (x2)

I x1 − z1 ∈ ∂h(z1) and x2 − z2 ∈ ∂h(z2)
I due to convexity of h, we have{

h(z2) ≥ h(z1) + 〈z2 − z1, x1 − z1〉
h(z1) ≥ h(z2) + 〈z1 − z2, x2 − z2〉

I ⇒ 〈x1 − x1 − (z1 − z2), z1 − z2〉 ≥ 0

I ⇔ 〈x1 − x1, z1 − z2〉 ≥ ‖z1 − z2‖2 ⇒ firmly nonexpansive

I together with Cauchy-Schwarz, we obtain the nonexpansiveness.

Proximal gradient descent 5

Proximal gradient methods

I Proximal gradient descent

xk+1 = proxγh
(
xk − γ∇f(xk)

)
– alternates between gradient updates on f and proximal minimizaiton

on h
– useful when proxγh (·) is simple to evaluate

I Which is equivalent to

xk+1 = arg min
x

{
1

2γ

∥∥x− (xk − γ∇f(xk))
∥∥2 + h(x)

}

= arg min
x

1

2γ

∥∥x− xk∥∥2︸ ︷︷ ︸
proximal term

+γ
〈
x− xk,∇f(xk)

〉︸ ︷︷ ︸
first-order approximation

+ h(x)︸︷︷︸
regularization

Proximal gradient descent 6

Linear Convergence of Proximal Gradient Methods

Theorem (Linear Convergence Rate)

Let f be µ-strongly convex and L-smooth. If ηk ≡ γ = 1
L , then

∥∥xk − x?∥∥2 ≤ (1− 1

κ

)k ∥∥x0 − x?∥∥2
where κ := L/µ is condition number; x? is minimizer.

I dimension-free in iteration complexity: need O(κ log 1
ε) number of

iterations to reach an accuracy of ε.

I slightly weaker than that of unconstrained cases.

Proximal gradient descent 7

Sublinear Convergence of Proximal Gradient Methods

Theorem (Sublinear Convergence Rate)

Let f be convex and L-smooth. If ηk ≡ γ = 1
L , then

F (xk)− F ? ≤
L
∥∥x0 − x?∥∥2

k

where x? is any minimizer attaining the optimal value of f(x?)

I dimension-free in iteration complexity: need O(1
ε) number of

iterations to reach an accuracy of ε

I better than subgradient methods which gives O(1/ε2)

I fast if proxh (·) can be efficiently implemented

Proximal gradient descent 8

Comparing to gradient methods

I Gradient descent

stepsize rule
convergence

rate
iteration

complexity
convex & smooth

problems
γk = 1

L O(1/k) O(1
ε)

strongly convex &
smooth problems

γk = 2
L+µ O((κ−1κ+1)k) O(κ log 1

ε)

I Proximal gradient descent

stepsize rule
convergence

rate
iteration

complexity
convex & smooth

problems
γk = 1

L O(1/k) O(1
ε)

strongly convex &
smooth problems

γk = 1
L O((1− 1

κ)k) O(κ log 1
ε)

Proximal gradient descent 9

Numerical example: LASSO

I A LASSO problem (Compressive Sensing)

min
x∈Rd

F (x) =
1

2
‖Ax− b‖2 + ‖x‖1

with i.i.d Gaussian A ∈ R2000×1000, γ = 1/L,L = λmax(ATA)

Proximal gradient descent 10

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Dual proximal gradient methods 10

Conjugate convex functions

Let f : Rn → R ∪ {±∞} be an
extend-valued convex function.

I Convex conjugate function

f∗(y) := sup
x∈Rn

{〈x, y〉 − f(x)}

where f∗ : Rn → R ∪ {±∞} is the
convex conjugate of f

I Similar to Fourier Transformation

I Useful in primal-dual convex
analysis

Figure: Geometric intepretion
(courtesy to Bertsekas)

Dual proximal gradient methods 11

Conjugate convex functions

Examples: f∗(y) := supx∈Rn {〈x, y〉 − f(x)}

I linear function

f(x) := a · x− b → f∗(y) =

{
0, y = a

+∞, y 6= a

I stricly convex quadratic funciton f(x) = 1
2x

TAx with A � 0

f∗(y) = sup
x

{
〈x, y〉 − 1

2
xTAx

}
=

1

2
xTA−1x

I power function (DIY)

f(x) :=
|x|p

p
(where p > 1) → f∗(y) :=

|y|q

q
(where

1

p
+

1

q
= 1)

I when f = f∗? (f = 1
2 ‖·‖

2)

Dual proximal gradient methods 12

Properties of conjugate functions

Let f : Rn → R ∪ {±∞} be an extend-valued convex function and f∗ be
its convex conjugate function.

Theorem (Fenchel’s inequality)

For any x, y, we have

〈x, y〉 ≤ f(x) + f∗(y)

When f = |x|p
p , the above reduces to Young inequality. Also,

I f∗ is always convex no matter f is convex or not

I Let f be proper and convex. Then, y ∈ ∂f(x)⇔ x ∈ ∂f∗(y)

I if f is µ-strongly convex, then f∗ is 1/µ-smooth and vice versa.

I Question: when f = f∗∗? (HW)

Dual proximal gradient methods 13

Moreau decomposition

Lemma (Moreau decomposition)

Suppose f is closed, proper and convex.
Then, we have

x = proxf (x) + proxf∗ (x)

I key relationship between proximal
mapping and duality

I generalization of orthogonal
decomposition

A special case for a subspace V , we have x = PV (x) + PV ⊥(x)

Dual proximal gradient methods 14

Convex optimization with affine constraints

I Consider the problem

min
x∈Rn

f(x), s.t. Ax = b︸ ︷︷ ︸
affine constraint

where f is convex and smooth.

I Can be rewritten as
min
x∈Rn

f(x) + h(Ax)

where h(u) is an indicator function defined as

h(·) =

{
0, if Ax = b

∞, otherwise

I proximal operator w.r.t. h̃(x) := h(Ax) could be very difficult (even
when proxh (·) is simle due to the complication of A)

Dual proximal gradient methods 15

Fenchel Duality

I Consider the problem

P ? := min
x∈Rn

f(x) + h(Ax)

whose dual problem is

D? := min
y
−f∗(−AT y)− h∗(y)

where ∗ denotes the (Fenchel) conjugate.
I dual formulation

P ? = min
x∈Rn
{f(x) + max

y∈Rn
〈Ax, y〉 − h∗(y)︸ ︷︷ ︸

:=h(Ax)

}

= min
x∈Rn

max
y∈Rn
{f(x) + 〈Ax, y〉 − h∗(y)} (saddle point formualtion)

= max
y∈Rn

min
x∈Rn
{f(x) + 〈Ax, y〉}︸ ︷︷ ︸
:=−f∗(−AT y)

−h∗(y) = D? (minmax theorem)

Dual proximal gradient methods 16

Connection to Lagarange Duality

I Consider the problem

P ? := min
x∈Rn

f(x) + h(Ax)

I Let z = Ax. Then, we have

min
x∈Rn

f(x) + h(z), s.t. z = Ax.

I The Lagarange dual function

g(y) = min
x,z

L(x, z, y) = min
x,z

f(x) + h(z) + yT (Ax− z)

= min
x
{f(x) + yTAx}+ min

z
{h(z)− yT z}

= min
x
{f(x)− (−AT y)Tx}+ min

z
{h(z)− yT z}

= −f∗(−AT y)− h∗(y)

which is exactly the above dual problem

Dual proximal gradient methods 17

Dual proximal gradient methods

Dual proximal gradient methods

yk+1 = proxγh∗
(
yk + γA∇f∗(AT yk)

)
I proxγh∗ (x) can be calculated from the primal I − proxγh (x/γ)

Theorem (Sublinear Convergence Rate)

Let f be µ-strongly convex. If γk ≡ γ = µ
λmax(A)2 , then

D(yk)−D? ≤
µ
∥∥x0 − x?∥∥2
λmax(A)2k

What if A is not full rank? (HW)

Dual proximal gradient methods 18

Dual proximal gradient methods

Dual proximal gradient methods

yk+1 = proxγh∗
(
yk + γA∇f∗(AT yk)

)
I proxγh∗ (x) can be calculated from the primal I − proxγh (x/γ)

Theorem (Linear Convergence Rate)

Let f be µ-strongly convex and L-smooth and A be a full-rank matrix
with κA = λmax(A)/λmin(A). If γk ≡ γ = 2Lµ

Lλmax(A)2+µλmin(A)2 , then

∥∥yk − y?∥∥2 ≤ (1− 1

κκ2A

)k ∥∥y0 − y?∥∥2
where y? is the optimum for the dual problem.

What if A is not full rank? (HW)
Dual proximal gradient methods 18

Primal representation of dual proximal gradient

methods

I Let xk = ∇f∗(AT yk). This means that AT yk = ∇f(xk)

I By first-order optimality, the above is equivalent to

xk = arg min
x
{f(x) +

〈
AT yk, x

〉
}

Dual proximal gradient methods

xk = arg min
x
{f(x) +

〈
AT yk, x

〉
}

yk+1 = proxγh∗
(
yk + γAxk

)
I {xk} is primal sequence, which is not always feasible!

I Can we approximately solve the sub-problem involving xk?

Dual proximal gradient methods 19

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Primal-dual gradient methods 19

A saddle-point formulation

A saddle-point formulation

min
x

max
y

f(x) + 〈y,Ax〉 − h∗(y)

remember how to derive it? (HW)

I KKT conditions {
0 ∈ ∇f(x) +AT y

0 ∈ Ax− ∂h∗(y)

I Can be rewriten as

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
:= F (x, y)

I Key idea: iteratively update (x, y) to solve the above inclusion

Primal-dual gradient methods 20

Monotone operator

I a relation T on a set Rn is a subset of Rn × Rn (e.g., set-valued
mapping ∂f := {(x, ∂f(x))|x ∈ Rn})

I relation T on Rn is monotone if

(u− v)T (x− y) ≥ 0 ∀(x, u), (y, v) ∈ T

I Examples

– T (x) = ∂f(x) is monotone
– Skew-symmetric matrix is also monotone[

0 AT

−A 0

]
– Why? (Using the definition)

Primal-dual gradient methods 21

Resolvent operator and cocoercive property

I for λ ∈ R, resolvent of relation T is

R = (I + λT)−1

when F = ∂f , the above reduces to proxλf (·)
I We say T is β-cocoercive in G-space if

β ‖Tx− Ty‖2G ≤ 〈Tx− Ty, x− y〉G
I if T is monotone, then R is 1-cocoercive

– suppose (x, u) ∈ R and (y, v) ∈ R, i.e.,

x ∈ u+ λT (u), y ∈ v + λT (v)

– substract to get x− y ∈ u− v + λ(T (u)− T (v))
– multiply by (u− v)T and use the monotonicity of T

Primal-dual gradient methods 22

(Generalized) Forward-backward splitting

I Motivated by solving composite problem, e.g.,

find x s.t. 0 ∈ (M + F)x

where M : monotone and F : cocoercive.

I Usually difficult to be solved together

I Examples: min
x

1
2 ‖Mx− b‖22 + ‖x‖1

I Equivalent to finding fixed point of (I − γF)︸ ︷︷ ︸
TF

x ∈ (I + γM)︸ ︷︷ ︸
TM

x

I which can be solved by:{
xk+ 1

2
= (I − γF)xk, (TF : gradient operator)

xk+1 = proxγM (xk+ 1
2
), (TM : resolvent operator)

, separated!

I Since M is monotone and F is cooercive, with proper stepsize γ
⇒ (xk)k∈N converges to x∗

Primal-dual gradient methods 23

(Generalized) Forward-backward splitting

I Motivated by solving composite problem, e.g.,

find x s.t. 0 ∈ (M + F)x

where M : monotone and F : cocoercive.

I Usually difficult to be solved together

I Examples: min
x

1
2 ‖Mx− b‖22 + ‖x‖1

I Equivalent to finding fixed point of (I − γG−1F)︸ ︷︷ ︸
TF

x ∈ (I + γG−1M)︸ ︷︷ ︸
TM

x

I which can be solved by:{
xk+ 1

2
= (I −G−1F)xk, (gradient operator)

xk+1 = proxG−1M (xk+ 1
2
), (proximal operator)

, separated!

I G−1F, G−1M is cooercive and monotone in G-space, respectively
(why?), with proper stepsize G ⇒ (xk)k∈N converges to x∗

Primal-dual gradient methods 23

(Inexact) Primal-dual gradient methods

I Recall the primal-dual problem

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
0 AT

−A ∂h∗

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the forward-backward splitting, we have([
1
γ
I 0

0 1
τ
I

]
+

[
0 AT

−A ∂h∗

])[
xk+1

yk+1

]
=

([
1
γ
I 0

0 1
τ
I

]
−
[
∇f 0
0 0

])[
xk

yk

]

Primal-dual gradient methods 24

(Inexact) Primal-dual gradient methods-cont’

I Which is equivalent to[
xk+1

yk+1

]
=

([
I γAT

−τA I + τ∂h∗

])−1
︸ ︷︷ ︸

(G+M)−1

[
I − γ∇f 0

0 I

]
︸ ︷︷ ︸

G−F

[
xk

yk

]

I and can be rewritten as

xk+1 = xk − γ∇f(xk)− γAT yk+1

yk+1 = proxτh∗
(
yk − τAxk+1

)
I still coupled in xk+1 and yk+1 due to the complication of A

I how can we further avoid the calculation of the inverse of A? note
that it is not always possible to do this in dsitributed settings.

Primal-dual gradient methods 25

Efficient Primal-dual gradient methods

I Recall the primal-dual problem

0 ∈
[
∇f AT

−A ∂h∗

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
0 AT

−A ∂h∗

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the (generalized) forward-backward splitting, we have([
1
γ I −AT

−A 1
τ I

]
+
[

0 AT

−A ∂h∗

]) [
xk+1

yk+1

]
=
([

1
γ I −AT

−A 1
τ I

]
−
[
∇f 0
0 0

]) [
xk

yk

]

Primal-dual gradient methods 26

Efficient Primal-dual gradient methods

I Using the forward-backward splitting, we have[
xk+1

yk+1

]
=

([
I 0

−2τA I + τ∂h∗

])−1 [
I − γ∇f −γAT
−τA I

] [
xk

yk

]
I which can be rewritten as

xk+1 = xk − γ∇f(xk)− γAT yk

yk+1 = proxτh∗
(
yk − τA(2xk+1 − xk)

)
I now x and y is no longer coupled!

I this way allows us to avoid the calculation of the inverse of A

Primal-dual gradient methods 27

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Distributed primal-dual gradient methods 27

Distributed Optimization with Regularization

I Want to solve the following original problem

min
x∈Rd

1

m

m∑
i=1

fi(x) + hi(x), (P)

– x ∈ Rd: the global decision variable

– fi : Rd → R the cost funciton known only
by the associated agent i.

– hi : Rd → R ∪ {±∞} is a (potentially
nonsmooth) function of agent i.

1

f1(x) + h1(x)
2

f2(x) + h2(x)

3f3(x) + h3(x)

4

f4(x) + h4(x)

Figure: A network model

I Equivalent to solve the problem as follows

min
x∈Rm

f(x) =

m∑
i=1

fi(xi) + hi(xi) s.t. xi = xi, ∀i, j ∈ V,

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum x?.

Distributed primal-dual gradient methods 28

Distributed proximal gradient method

I Distributed proximal gradient method (DPGM)

xi,k+1 = proxγhi

 m∑
j=1

wijxj,k − γ∇fi(xi,k)

– γ: the constant stepsize chosen by agents,
– proxγhi : the proximal operator1 of hi with the parameter γ.

I Convergence result (x̄k = 11T

m xk, γ ≤ 1/L):

max{
∥∥∥xk − x̄k

∥∥∥︸ ︷︷ ︸
Disagreement

,
∣∣∣f(xk)− f(x?)

∣∣∣︸ ︷︷ ︸
Optimality gap

} ≤ O(1/k) +O(γ)

– steady state error O(γ),
– need bounded (sub)gradient assumption: ‖∇fi‖ < C

I Only update primal variables; can we do it from dual or even
primal-dual simulaneously?

1proxγφ = argminu
(
φ(u) + 1

2γ ‖u− x‖
2
)

Distributed primal-dual gradient methods 29

Distributed Optimization with Regularization

I Recalling the following original problem

min
x∈Rd

1

m

m∑
i=1

fi(x) + gi(x), (P)

– x ∈ Rd: the global decision variable

– fi : Rd → R the cost funciton known only
by the associated agent i.

– gi : Rd → R ∪ {±∞} is a (potentially
nonsmooth) function of agent i.

1

f1(x) + g1(x)
2

f2(x) + g2(x)

3f3(x) + g3(x)

4

f4(x) + g4(x)

Figure: A network model

I Equivalent to solve the problem as follows

min
x∈Rm

f(x) =

m∑
i=1

fi(xi) + gi(xi) s.t. (I−W)1/2x = 0︸ ︷︷ ︸
consensus when null{I−W}=span{1}

,

– x = [x1, x2, ...xm]T : local estimates of agents for global optimum x?.

Distributed primal-dual gradient methods 30

Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I Using the (generalized) forward-backward splitting, we have([
1
γ
I L

L 1
τ
I

]
+

[
∂g L
−L 0

])[
xk+1

yk+1

]
=

([
1
γ
I L

L 1
τ
I

]
−
[
∇f 0
0 0

])[
xk

yk

]

Distributed primal-dual gradient methods 31

Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as

xk+1 = proxγg
(
xk − γ∇f(xk)− γL(2yk+1 − yk)

)
yk+1 = yk − τLxk

Distributed primal-dual gradient methods 31

Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as

xk+1 = proxγg
(
xk − γ∇f(xk)− γL(2yk − yk−1)

)
yk+1 = yk − τLxk+1

Distributed primal-dual gradient methods 31

Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as (τ = 1/γ)

xk+1 = proxγg
(
Wxk − γ∇f(xk)− γLyk

)
yk+1 = yk − 1/γLxk+1

Distributed primal-dual gradient methods 31

Derivation of Distributed Primal-dual gradient methods

I KKT conditions (L = (I−W)1/2)

0 ∈
[
∇f + ∂g L
−L 0

] [
x
y

]
I which can be rewritten as

0 ∈
[
∇f 0
0 0

]
︸ ︷︷ ︸

:=F

[
x
y

]
+

[
∂g L
−L 0

]
︸ ︷︷ ︸

:=M

[
x
y

]

I can be rewritten as (τ = 1/γ, y′k = Lyk)

xk+1 = proxγg
(
Wxk − γ∇f(xk)− γy′k

)
y′k+1 = y′k − τL2xk+1

Distributed primal-dual gradient methods 31

Primal-dual distributed gradient method

ID-FBBS Algorithm

xk+1 = proxγg (Wxk − γ(∇f(xk) + yk))

yk+1 = yk +
1

γ
(I−W)xk+1,

– yk is the dual variable whose sum is maintained at zero.

1. Initialization: ∀ agent i ∈ V: xi,0 randomly assigned;
∑
i∈V yi,0 = 0.

2. Primal Update: ∀ agent i ∈ V, computes:

xi,k+1 = proxγgi

∑
j∈Ni

wijxj,k − γ(∇fi(xi,k) + yi,k)

3. Dual Update: ∀ agent i ∈ V, computes:

yi,k+1 = yj,k +
1

γ

∑
j∈Ni

wij(xi,k+1 − xj,k+1)

4. Set k → k + 1 and go to Step 2.

Distributed primal-dual gradient methods 32

Connections to Existing Algorithms

I Recalling the ID-FBBS Algorithm

xk+1 = Wxk − γ(∇f(xk) + yk) (a)

yk+1 = yk +
1

γ
(I−W)xk+1, (b)

I Let γyk =
√
I−Wy′k, the above algorithm can be rewritten as

xk+1 = Wxk − γ∇f(xk)−
√
I−Wy′k

y′k+1 = y′k +
√
I−Wxk+1

I Equivalent to applying the Arrow-Hurwicz-Uzawa Method2{
xk+1 = xk − γ∇xL(x,y

′
k)

y′k+1 = y′k + γ∇y′L(xk+1,y
′)

– where L(x,y′) = f(x) + 1
γ
xT
√
I−Wy′ + 1

2γ
xT (I−W)x

2K.J. Arrow, L. Hurwicz, and H. Uzawa, Stanford University Press, 1958
Distributed primal-dual gradient methods 33

Connections to Existing Algorithms

I Taking the augmented Lagrangian as follows:

L(x,y′) = f(x) +
1

γ
xT (I−W)y′ +

1

2γ
xT (I−W2)x,

Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = W2xk − γ∇f(xk)− (I−W)y′k (c)

y′k+1 = y′k + (I−W)xk+1 (d)

I Evaluating (c) at k + 1 and k, respectively and eliminating y′ using (d),
simple calculation gives

xk+2 −Wxk+1 = W(xk+1 −Wxk) + γ(g(xk+1)− g(xk))

Let γyk+1 = xk+2 −Wxk+1. Then, we recover

the original AugDGM

{
xk+1 = Wxk − γyk
yk+1 = Wyk + g(xk+1)− g(xk).

Distributed primal-dual gradient methods 34

A Unified Primal-Dual Framework

I Design a proper augmented Lagrangian:

L(x,y) = f(x) +
1

γ
xTAy +

1

2γ
‖x‖2B ,

I Applying the Arrow-Hurwicz-Uzawa Method leads to

xk+1 = (I−B)xk − γ∇f(xk)−Ayk

yk+1 = yk +Axk+1

I Properly choose A and B such that consensus can be ensured, we can
easily come up with new distributed algorithms

I What conditions on A,B leads to convergence?

Distributed primal-dual gradient methods 35

A Unified Algorithmic Framework

A unified ABC algorithm3

xk+1 = Axk − γB∇f(xk)− yk,

yk+1 = yk + Cxk+1,

– where A,B,C are three weight matrices to be properly defined.

The above unified algorithm subsumes many existing algorithms.

Algorithm A B C

ID-FBBS/EXTRA 1
2

(I + W) I 1
2

(I−W)

NIDS/Exact Diffusion 1
2

(I + W) 1
2

(I + W) 1
2

(I−W)
AugDGM/NEXT W2 W2 (I−W)2

DIGing/Harnessing W2 I (I−W)2

3[Xu et al, IEEE TSP’21]

Distributed primal-dual gradient methods 36

Sublinear Convergence Rate

Let Sm be the set of m×m symmetric matrices.

I Assumptions

– Cost function {fi}: L-smooth;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, 0 � A � I,
iii) span{1} = null{C} ⊆ null{I−A}.

Theorem (Sublinear rate for the unified algorithm)

Let {(xk,yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 1

L
, the

algorithm converges at a sublinear rate of

max

{
L
∥∥x0 − x?

∥∥2
k + 1

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖∇f(x?)‖
k + 1

}
,

where η(C) :=
λmin(C)
λmax(C)

denotes the eigengap of the matrix C.

Distributed primal-dual gradient methods 37

Some Observations

The convergence rate has the following structure4

max

L
∥∥x0 − x?

∥∥2
k + 1︸ ︷︷ ︸

computation

,
1√
η(C)

∥∥x0 − x?
∥∥ ‖∇f(x?)‖
k + 1︸ ︷︷ ︸

communication

g(x?)=0⇒ O

(
L
∥∥x0 − x?

∥∥2
k + 1

)
︸ ︷︷ ︸

centralized rate

.

I 1/
√
η ≈ the diameter of the network for simple networks, e.g., line graphs

I ‖∇f(x?)‖ encodes the “heterogeneity” of functions; g(x?) = 0 implies

– Case 1: When all agents share common solution, e.g., the
distribution of all local data sets are similar.

– Case 2: When a spanning tree algorithm is employed, e.g, exact
average of local data, e.g., local gradients.

I The algorithm reduces to the centralized one!

4Refer to [Xu et al, AISTATS’20; TSP’21] for more details.
Distributed primal-dual gradient methods 38

Linear Convergence Rate

Let Sm be the set of m×m symmetric matrices.

I Assumptions

– Cost function {fi}: L-smooth and µ-strongly convex;
– Weight Matrix:

i) A,B,C ∈ Sm and C � 0,
ii) A = B, BC = CB, B2 � I−C,
iii) span{1} = null{C} ⊆ null{I−A}.

Theorem (Linear rate for the unified algorithm)

Let {(xk,yk)}k≥0 be the iterates generated by the above algorithm with
1Ty0 = 0. Suppose the above Assumptions hold. Then, if γ = 2

L+µ
, the

algorithm converges at a linear rate of O(σk) with

σ = max

{
κ− 1

κ+ 1
, 1− λmin(C)

}
,

where λmin(C) denotes the connectivity of the graph.

Distributed primal-dual gradient methods 39

Simulation Setting

A Canonical Example of Distributed Estimation

I Overall loss function

F =
m∑
i=1

(
‖zi −Miθ‖2 + λi ‖θ‖1

)
– Mi ∈ Rs×d: measurement matrix
– zi: noisy observation of agent i
– λi: regularization parameter.

I Metropolis-Hastings protocol5

wij =

{
1

2·max{di,dj}
, if (i, j) ∈ E

1−
∑
j∈Ni

wij , if i = j

0, otherwise,

– di: the degree of agent i.

Figure: A random network of 50
nodes

5slightly modified to ensure the positivity.

Distributed primal-dual gradient methods 40

Performance Evaluation

Parameter Setting: d = 10, s = 1,m = 50, λi = 0.02, ∀i ∈ V;
Mi ∈ Rr×d: a uniform distribution; Gaussian Noise: N (0, 0.1)

0 200 400 600 800 1000 1200
10

−15

10
−10

10
−5

10
0

Iterations

R
es

id
ua

l (
lo

g)

D−FBBS versus DPGM

DPGM: γ=0.5/k0.5

DPGM: γ=0.1
DPGM: γ=0.2
D−FBBS: γ=0.1

Figure: FPR (e =
‖xk−x∗‖2
‖x0−x∗‖2

) Versus Iterations

Distributed primal-dual gradient methods 41

References

Boyd, Stephen, and Lieven Vandenberghe. Convex optimization.
Cambridge University press, 2004.

Dimitri P., Bertsekas, Angelia, Nedich and Asuman E., Ozdaglar.
Convex Analysis and Optimization. Athena Scientific, 2003.

Angelia, Nedich. Lecture Notes for Convex Optimization. University
of Illinois Urbana-Champaign, 2008.

Ryan Tibshirani, Lecture Notes for Convex Optimzation. Carnegie
Mellon University, 2018.

Yuxin Chen, Lecture Notes for Large-Scale Optimization for Data
Science. Princeton University, 2018.

Bubeck, Sébastien. (2014). Theory of Convex Optimization for
Machine Learning.

Emmanuel Candes. (2015). Lecture Notes for Advanced Topics in
Convex Optimizationg. Stanford University, 2015.

Distributed primal-dual gradient methods 42

	Proximal gradient descent
	Dual proximal gradient methods
	Primal-dual gradient methods
	Distributed primal-dual gradient methods

