2021 ZJU-CSE Summer School

Lecture VIII: Distributed Composite Optimizaiton

Jinming $\mathbf{X u}$

Zhejiang University

August 06, 2021

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Proximal gradient descent

Composite optimization

- Composite optimization problem

$$
F^{\star}=\min _{x \in \mathbb{R}^{d}} F(x):=f(x)+h(x)
$$

- f : convex and smooth
- h : convex (potentially non-smooth)
- Examples
- l_{1}-regularization (e.g., compressive sensing) to promote sparsity

$$
\min _{x \in \mathbb{R}^{d}} f(x)+\underbrace{\|x\|_{1}}_{h(x): l_{1} \text { norm }}
$$

- TV-regualization (e.g., image recovery) to promote?

$$
\min _{x \in \mathbb{R}^{d}} f(x)+\underbrace{\|x\|_{T V}}_{h(x): \text { Total Variation }}
$$

Proximal operator

- Proximal operator

$$
\operatorname{prox}_{h}(x):=\arg \min _{z}\left\{h(z)+\frac{1}{2}\|z-x\|^{2}\right\}
$$

for any convex function h.

- Why consider proximal operators?
- well-defined under very general conditions (including nonsmooth convex functions)
- can be evaluated efficiently for many widely used functions (regularizers)
- provide a conceptually and mathematically simple way to cover many optimization algorithms, including PGD, PPA, ADMM and so on.

Examples of Proximal Operators

- If $h(x)=\|x\|_{1}$, then

$$
\operatorname{prox}_{\lambda h}(x)=\left\{\begin{array}{ll}
x-\lambda, & \text { if } x>\lambda \\
x+\lambda, & \text { if } x<-\lambda \\
0, & \text { else }
\end{array} \quad\right. \text { (Soft-thresholding) }
$$

- If $h(x)=\iota_{\mathcal{X}}(x)=\left\{\begin{array}{ll}0, & \text { if } x \in \mathcal{X} \\ \infty, & \text { else }\end{array}\right.$, then

$$
\begin{equation*}
\operatorname{prox}_{\lambda h}(x)=\mathcal{P}_{\mathcal{X}}(x) \tag{Projection}
\end{equation*}
$$

- many other examples...

Properties of Proximal operator

- Firmly nonexpansive

$$
\left\langle\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y), x-y\right\rangle \geq\left\|\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y)\right\|^{2}
$$

- Nonexpansive

$$
\left\|\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y)\right\| \leq\|x-y\|
$$

Proof of sketch: $z_{1}=\operatorname{prox}_{h}\left(x_{1}\right), z_{2}=\operatorname{prox}_{h}\left(x_{2}\right)$

- $x_{1}-z_{1} \in \partial h\left(z_{1}\right)$ and $x_{2}-z_{2} \in \partial h\left(z_{2}\right)$
- due to convexity of h, we have

$$
\left\{\begin{array}{l}
h\left(z_{2}\right) \geq h\left(z_{1}\right)+\left\langle z_{2}-z_{1}, x_{1}-z_{1}\right\rangle \\
h\left(z_{1}\right) \geq h\left(z_{2}\right)+\left\langle z_{1}-z_{2}, x_{2}-z_{2}\right\rangle
\end{array}\right.
$$

$\bullet \Rightarrow\left\langle x_{1}-x_{1}-\left(z_{1}-z_{2}\right), z_{1}-z_{2}\right\rangle \geq 0$

- $\Leftrightarrow\left\langle x_{1}-x_{1}, z_{1}-z_{2}\right\rangle \geq\left\|z_{1}-z_{2}\right\|^{2} \Rightarrow$ firmly nonexpansive
- together with Cauchy-Schwarz, we obtain the nonexpansiveness.

Proximal gradient methods

- Proximal gradient descent

$$
x^{k+1}=\operatorname{prox}_{\gamma h}\left(x^{k}-\gamma \nabla f\left(x^{k}\right)\right)
$$

- alternates between gradient updates on f and proximal minimizaiton on h
- useful when $\operatorname{prox}_{\gamma h}(\cdot)$ is simple to evaluate
- Which is equivalent to

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x}\left\{\frac{1}{2 \gamma}\left\|x-\left(x^{k}-\gamma \nabla f\left(x^{k}\right)\right)\right\|^{2}+h(x)\right\} \\
& =\arg \min _{x}\{\underbrace{\frac{1}{2 \gamma}\left\|x-x^{k}\right\|^{2}}_{\text {proximal term }}+\gamma \underbrace{\left\langle x-x^{k}, \nabla f\left(x^{k}\right)\right\rangle}_{\text {first-order approximation }}+\underbrace{h(x)}_{\text {regularization }}\}
\end{aligned}
$$

Linear Convergence of Proximal Gradient Methods

Theorem (Linear Convergence Rate)

Let f be μ-strongly convex and L-smooth. If $\eta_{k} \equiv \gamma=\frac{1}{L}$, then

$$
\left\|x^{k}-x^{\star}\right\|^{2} \leq\left(1-\frac{1}{\kappa}\right)^{k}\left\|x^{0}-x^{\star}\right\|^{2}
$$

where $\kappa:=L / \mu$ is condition number; x^{\star} is minimizer.

- dimension-free in iteration complexity: need $\mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$ number of iterations to reach an accuracy of ϵ.
- slightly weaker than that of unconstrained cases.

Sublinear Convergence of Proximal Gradient Methods

Theorem (Sublinear Convergence Rate)

Let f be convex and L-smooth. If $\eta_{k} \equiv \gamma=\frac{1}{L}$, then

$$
F\left(x^{k}\right)-F^{\star} \leq \frac{L\left\|x^{0}-x^{\star}\right\|^{2}}{k}
$$

where x^{\star} is any minimizer attaining the optimal value of $f\left(x^{\star}\right)$

- dimension-free in iteration complexity: need $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ number of iterations to reach an accuracy of ϵ
- better than subgradient methods which gives $\mathcal{O}\left(1 / \epsilon^{2}\right)$
- fast if $\operatorname{prox}_{h}(\cdot)$ can be efficiently implemented

Comparing to gradient methods

- Gradient descent

	stepsize rule	convergence rate	iteration complexity
convex \& smooth problems	$\gamma_{k}=\frac{1}{L}$	$\mathcal{O}(1 / k)$	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$
 smooth problems	$\gamma_{k}=\frac{2}{L+\mu}$	$\mathcal{O}\left(\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\right)$	$\mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$

- Proximal gradient descent

	stepsize rule	convergence rate	iteration complexity
convex \& smooth problems	$\gamma_{k}=\frac{1}{L}$	$\mathcal{O}(1 / k)$	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$
 smooth problems	$\gamma_{k}=\frac{1}{L}$	$\mathcal{O}\left(\left(1-\frac{1}{\kappa}\right)^{k}\right)$	$\mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$

Numerical example: LASSO

- A LASSO problem (Compressive Sensing)

$$
\min _{x \in \mathbb{R}^{d}} F(x)=\frac{1}{2}\|A x-b\|^{2}+\|x\|_{1}
$$

with i.i.d Gaussian $A \in \mathbb{R}^{2000 \times 1000}, \gamma=1 / L, L=\lambda_{\max }\left(A^{T} A\right)$

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Conjugate convex functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be an extend-valued convex function.

- Convex conjugate function

$$
f^{*}(y):=\sup _{x \in \mathbb{R}^{n}}\{\langle x, y\rangle-f(x)\}
$$

where $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is the convex conjugate of f

- Similar to Fourier Transformation
- Useful in primal-dual convex analysis

Figure: Geometric intepretion (courtesy to Bertsekas)

Conjugate convex functions

Examples: $f^{*}(y):=\sup _{x \in \mathbb{R}^{n}}\{\langle x, y\rangle-f(x)\}$

- linear function

$$
f(x):=a \cdot x-b \quad \rightarrow \quad f^{*}(y)=\left\{\begin{array}{l}
0, \quad y=a \\
+\infty, \quad y \neq a
\end{array}\right.
$$

- stricly convex quadratic funciton $f(x)=\frac{1}{2} x^{T} A x$ with $A \succ 0$

$$
f^{*}(y)=\sup _{x}\left\{\langle x, y\rangle-\frac{1}{2} x^{T} A x\right\}=\frac{1}{2} x^{T} A^{-1} x
$$

- power function (DIY)

$$
f(x):=\frac{|x|^{p}}{p}(\text { where } p>1) \quad \rightarrow \quad f^{*}(y):=\frac{|y|^{q}}{q}\left(\text { where } \frac{1}{p}+\frac{1}{q}=1\right)
$$

- when $f=f^{*} ?\left(f=\frac{1}{2}\|\cdot\|^{2}\right)$

Properties of conjugate functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be an extend-valued convex function and f^{*} be its convex conjugate function.

Theorem (Fenchel's inequality)

For any x, y, we have

$$
\langle x, y\rangle \leq f(x)+f^{*}(y)
$$

When $f=\frac{|x|^{p}}{p}$, the above reduces to Young inequality. Also,

- f^{*} is always convex no matter f is convex or not
- Let f be proper and convex. Then, $y \in \partial f(x) \Leftrightarrow x \in \partial f^{*}(y)$
- if f is μ-strongly convex, then f^{*} is $1 / \mu$-smooth and vice versa.
- Question: when $f=f^{* *}$? (HW)

Moreau decomposition

Lemma (Moreau decomposition)

Suppose f is closed, proper and convex. Then, we have

$$
x=\operatorname{prox}_{f}(x)+\operatorname{prox}_{f^{*}}(x)
$$

- key relationship between proximal mapping and duality

- generalization of orthogonal decomposition

A special case for a subspace V, we have $x=\mathcal{P}_{V}(x)+\mathcal{P}_{V^{\perp}}(x)$

Convex optimization with affine constraints

- Consider the problem

$$
\min _{x \in \mathbb{R}^{n}} f(x), \quad \text { s.t. } \underbrace{A x=b}_{\text {affine constraint }}
$$

where f is convex and smooth.

- Can be rewritten as

$$
\min _{x \in \mathbb{R}^{n}} f(x)+h(A x)
$$

where $h(u)$ is an indicator function defined as

$$
h(\cdot)=\left\{\begin{array}{lc}
0, & \text { if } A x=b \\
\infty, & \text { otherwise }
\end{array}\right.
$$

- proximal operator w.r.t. $\tilde{h}(x):=h(A x)$ could be very difficult (even when $\operatorname{prox}_{h}(\cdot)$ is simle due to the complication of A)

Fenchel Duality

- Consider the problem

$$
P^{\star}:=\min _{x \in \mathbb{R}^{n}} f(x)+h(A x)
$$

whose dual problem is

$$
D^{\star}:=\min _{y}-f^{*}\left(-A^{T} y\right)-h^{*}(y)
$$

where * denotes the (Fenchel) conjugate.

- dual formulation

$$
\begin{aligned}
& P^{\star}=\min _{x \in \mathbb{R}^{n}}\{f(x)+\underbrace{\left.\max _{y \in \mathbb{R}^{n}}\langle A x, y\rangle-h^{*}(y)\right\}}_{:=h(A x)} \\
& =\min _{x \in \mathbb{R}^{n}} \max _{y \in \mathbb{R}^{n}}\left\{f(x)+\langle A x, y\rangle-h^{*}(y)\right\} \quad \text { (saddle point formualtion) } \\
& =\max _{y \in \mathbb{R}^{n}}^{\min _{x \in \mathbb{R}^{n}}\{f(x)+\langle A x, y\rangle\}}-h^{*}(y)=D^{\star} \quad \text { (minmax theorem) } \\
& :=-f^{*}\left(-A^{T} y\right)
\end{aligned}
$$

Connection to Lagarange Duality

- Consider the problem

$$
P^{\star}:=\min _{x \in \mathbb{R}^{n}} f(x)+h(A x)
$$

- Let $z=A x$. Then, we have

$$
\min _{x \in \mathbb{R}^{n}} f(x)+h(z), \text { s.t. } z=A x
$$

- The Lagarange dual function

$$
\begin{aligned}
g(y)=\min _{x, z} L(x, z, y) & =\min _{x, z} f(x)+h(z)+y^{T}(A x-z) \\
& =\min _{x}\left\{f(x)+y^{T} A x\right\}+\min _{z}\left\{h(z)-y^{T} z\right\} \\
& =\min _{x}\left\{f(x)-\left(-A^{T} y\right)^{T} x\right\}+\min _{z}\left\{h(z)-y^{T} z\right\} \\
& =-f^{*}\left(-A^{T} y\right)-h^{*}(y)
\end{aligned}
$$

which is exactly the above dual problem

Dual proximal gradient methods

Dual proximal gradient methods

$$
y^{k+1}=\operatorname{prox}_{\gamma h^{*}}\left(y^{k}+\gamma A \nabla f^{*}\left(A^{T} y^{k}\right)\right)
$$

$\operatorname{prox}_{\gamma h^{*}}(x)$ can be calculated from the primal $I-\operatorname{prox}_{\gamma h}(x / \gamma)$

Theorem (Sublinear Convergence Rate)

Let f be μ-strongly convex. If $\gamma_{k} \equiv \gamma=\frac{\mu}{\lambda_{\max }(A)^{2}}$, then

$$
D\left(y^{k}\right)-D^{\star} \leq \frac{\mu\left\|x^{0}-x^{\star}\right\|^{2}}{\lambda_{\max }(A)^{2} k}
$$

What if A is not full rank? (HW)

Dual proximal gradient methods

Dual proximal gradient methods

$$
y^{k+1}=\operatorname{prox}_{\gamma h^{*}}\left(y^{k}+\gamma A \nabla f^{*}\left(A^{T} y^{k}\right)\right)
$$

$-\operatorname{prox}_{\gamma h^{*}}(x)$ can be calculated from the primal $I-\operatorname{prox}_{\gamma h}(x / \gamma)$
Theorem (Linear Convergence Rate)
Let f be μ-strongly convex and L-smooth and A be a full-rank matrix with $\kappa_{A}=\lambda_{\max }(A) / \lambda_{\min }(A)$. If $\gamma_{k} \equiv \gamma=\frac{2 L \mu}{L \lambda_{\max }(A)^{2}+\mu \lambda_{\min }(A)^{2}}$, then

$$
\left\|y^{k}-y^{\star}\right\|^{2} \leq\left(1-\frac{1}{\kappa \kappa_{A}^{2}}\right)^{k}\left\|y^{0}-y^{\star}\right\|^{2}
$$

where y^{\star} is the optimum for the dual problem.

What if A is not full rank? (HW)

Primal representation of dual proximal gradient methods

- Let $x^{k}=\nabla f^{*}\left(A^{T} y^{k}\right)$. This means that $A^{T} y^{k}=\nabla f\left(x^{k}\right)$
- By first-order optimality, the above is equivalent to

$$
x^{k}=\arg \min _{x}\left\{f(x)+\left\langle A^{T} y^{k}, x\right\rangle\right\}
$$

Dual proximal gradient methods

$$
\begin{aligned}
x^{k} & =\arg \min _{x}\left\{f(x)+\left\langle A^{T} y^{k}, x\right\rangle\right\} \\
y^{k+1} & =\operatorname{prox}_{\gamma h^{*}}\left(y^{k}+\gamma A x^{k}\right)
\end{aligned}
$$

- $\left\{x^{k}\right\}$ is primal sequence, which is not always feasible!
- Can we approximately solve the sub-problem involving x^{k} ?

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Primal-dual gradient methods

A saddle-point formulation

A saddle-point formulation

$$
\min _{x} \max _{y} f(x)+\langle y, A x\rangle-h^{*}(y)
$$

remember how to derive it? (HW)

- KKT conditions

$$
\left\{\begin{array}{l}
0 \in \nabla f(x)+A^{T} y \\
0 \in A x-\partial h^{*}(y)
\end{array}\right.
$$

- Can be rewriten as

$$
0 \in\left[\begin{array}{cc}
\nabla f & A^{T} \\
-A & \partial h^{*}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]:=F(x, y)
$$

- Key idea: iteratively update (x, y) to solve the above inclusion

Monotone operator

- a relation T on a set \mathbb{R}^{n} is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (e.g., set-valued mapping $\left.\partial f:=\left\{(x, \partial f(x)) \mid x \in \mathbb{R}^{n}\right\}\right)$
- relation T on \mathbb{R}^{n} is monotone if

$$
(u-v)^{T}(x-y) \geq 0 \quad \forall(x, u),(y, v) \in T
$$

- Examples
- $T(x)=\partial f(x)$ is monotone
- Skew-symmetric matrix is also monotone

$$
\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]
$$

- Why? (Using the definition)

Resolvent operator and cocoercive property

- for $\lambda \in \mathbb{R}$, resolvent of relation T is

$$
R=(I+\lambda T)^{-1}
$$

when $F=\partial f$, the above reduces to $\operatorname{prox}_{\lambda f}(\cdot)$

- We say T is β-cocoercive in G-space if

$$
\beta\|T x-T y\|_{G}^{2} \leq\langle T x-T y, x-y\rangle_{G}
$$

- if T is monotone, then R is 1-cocoercive
- suppose $(x, u) \in R$ and $(y, v) \in R$, i.e.,

$$
x \in u+\lambda T(u), \quad y \in v+\lambda T(v)
$$

- substract to get $x-y \in u-v+\lambda(T(u)-T(v))$
- multiply by $(u-v)^{T}$ and use the monotonicity of T

(Generalized) Forward-backward splitting

- Motivated by solving composite problem, e.g.,

$$
\text { find } x \quad \text { s.t. } 0 \in(M+F) x
$$

where M : monotone and F : cocoercive.

- Usually difficult to be solved together
- Examples: $\min _{x} \frac{1}{2}\|M x-b\|_{2}^{2}+\|x\|_{1}$
- Equivalent to finding fixed point of $\underbrace{(I-\gamma F)}_{T_{F}} x \in \underbrace{(I+\gamma M)}_{T_{M}} x$
- which can be solved by:

$$
\left\{\begin{array}{l}
x_{k+\frac{1}{2}}=(I-\gamma F) x_{k}, \quad\left(T_{F}: \text { gradient operator }\right) \\
x_{k+1}=\operatorname{prox}_{\gamma M}\left(x_{k+\frac{1}{2}}\right), \quad\left(T_{M}: \text { resolvent operator }\right) \quad, \text { separated! }
\end{array}\right.
$$

- Since M is monotone and F is cooercive, with proper stepsize γ $\Rightarrow\left(x_{k}\right)_{k \in \mathbb{N}}$ converges to x^{*}

(Generalized) Forward-backward splitting

- Motivated by solving composite problem, e.g.,

$$
\text { find } x \quad \text { s.t. } 0 \in(M+F) x
$$

where M : monotone and F : cocoercive.

- Usually difficult to be solved together
- Examples: $\min _{x} \frac{1}{2}\|M x-b\|_{2}^{2}+\|x\|_{1}$
- Equivalent to finding fixed point of $\underbrace{\left(I-\gamma G^{-1} F\right)}_{T_{F}} x \in \underbrace{\left(I+\gamma G^{-1} M\right)}_{T_{M}} x$
- which can be solved by:

$$
\left\{\begin{array}{l}
x_{k+\frac{1}{2}}=\left(I-G^{-1} F\right) x_{k}, \quad(\text { gradient operator }) \\
x_{k+1}=\operatorname{prox}_{G^{-1} M}\left(x_{k+\frac{1}{2}}\right), \quad(\text { proximal operator }) \quad, \quad \text { separated }!~
\end{array}\right.
$$

- $G^{-1} F, G^{-1} M$ is cooercive and monotone in G-space, respectively (why?), with proper stepsize $G \Rightarrow\left(x_{k}\right)_{k \in \mathbb{N}}$ converges to x^{*}

(Inexact) Primal-dual gradient methods

- Recall the primal-dual problem

$$
0 \in\left[\begin{array}{cc}
\nabla f & A^{T} \\
-A & \partial h^{*}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
0 & A^{T} \\
-A & \partial h^{*}
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Using the forward-backward splitting, we have

$$
\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & 0 \\
0 & \frac{1}{\tau} I
\end{array}\right]+\left[\begin{array}{cc}
0 & A^{T} \\
-A & \partial h^{*}
\end{array}\right]\right)\left[\begin{array}{c}
x^{k+1} \\
y^{k+1}
\end{array}\right]=\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & 0 \\
0 & \frac{1}{\tau} I
\end{array}\right]-\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{c}
x^{k} \\
y^{k}
\end{array}\right]
$$

(Inexact) Primal-dual gradient methods-cont'

- Which is equivalent to

$$
\left[\begin{array}{c}
x^{k+1} \\
y^{k+1}
\end{array}\right]=\underbrace{\left(\left[\begin{array}{cc}
I & \gamma A^{T} \\
-\tau A & I+\tau \partial h^{*}
\end{array}\right]\right)^{-1}}_{(G+M)^{-1}} \underbrace{\left[\begin{array}{cc}
I-\gamma \nabla f & 0 \\
0 & I
\end{array}\right]}_{G-F}\left[\begin{array}{c}
x^{k} \\
y^{k}
\end{array}\right]
$$

- and can be rewritten as

$$
\begin{aligned}
x^{k+1} & =x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma A^{T} y^{k+1} \\
y^{k+1} & =\operatorname{prox}_{\tau h^{*}}\left(y^{k}-\tau A x^{k+1}\right)
\end{aligned}
$$

- still coupled in x^{k+1} and y^{k+1} due to the complication of A
- how can we further avoid the calculation of the inverse of A ? note that it is not always possible to do this in dsitributed settings.

Efficient Primal-dual gradient methods

- Recall the primal-dual problem

$$
0 \in\left[\begin{array}{cc}
\nabla f & A^{T} \\
-A & \partial h^{*}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
0 & A^{T} \\
-A & \partial h^{*}
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Using the (generalized) forward-backward splitting, we have

$$
\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & -A^{T} \\
-A & \frac{1}{\tau} I
\end{array}\right]+\left[\begin{array}{cc}
0 & A^{T} \\
-A & \partial h^{*}
\end{array}\right]\right)\left[\begin{array}{c}
x^{k+1} \\
y^{k+1}
\end{array}\right]=\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & -A^{T} \\
-A & \frac{1}{\tau} I
\end{array}\right]-\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{c}
x^{k} \\
y^{k}
\end{array}\right]
$$

Efficient Primal-dual gradient methods

- Using the forward-backward splitting, we have

$$
\left[\begin{array}{c}
x^{k+1} \\
y^{k+1}
\end{array}\right]=\left(\left[\begin{array}{cc}
I & 0 \\
-2 \tau A & I+\tau \partial h^{*}
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
I-\gamma \nabla f & -\gamma A^{T} \\
-\tau A & I
\end{array}\right]\left[\begin{array}{l}
x^{k} \\
y^{k}
\end{array}\right]
$$

- which can be rewritten as

$$
\begin{aligned}
x^{k+1} & =x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma A^{T} y^{k} \\
y^{k+1} & =\operatorname{prox}_{\tau h^{*}}\left(y^{k}-\tau A\left(2 x^{k+1}-x^{k}\right)\right)
\end{aligned}
$$

- now x and y is no longer coupled!
- this way allows us to avoid the calculation of the inverse of A

Outline

Proximal gradient descent

Dual proximal gradient methods

Primal-dual gradient methods

Distributed primal-dual gradient methods

Distributed Optimization with Regularization

- Want to solve the following original problem

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)+h_{i}(x), \quad(\mathrm{P}) \tag{P}\\
\in & \mathbb{R}_{2}(x)+h_{2}(x) \\
: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { the global decision variable cost funciton known only } \\
\text { the associated agent } i \text {. } \\
: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{ \pm \infty\} \text { is a (potentially } & f_{3}(x)+h_{3}(x) \\
\text { nsmooth) function of agent } i . & \\
\end{array}
$$

- Equivalent to solve the problem as follows

$$
\min _{\mathbf{x} \in \mathcal{R}^{m}} f(\mathbf{x})=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)+h_{i}\left(x_{i}\right) \quad \text { s.t. } x_{i}=x_{i}, \forall i, j \in \mathcal{V}
$$

$-\mathbf{x}=\left[x_{1}, x_{2}, \ldots x_{m}\right]^{T}$: local estimates of agents for global optimum x^{\star}.

Distributed proximal gradient method

- Distributed proximal gradient method (DPGM)

$$
x_{i, k+1}=\operatorname{prox}_{\gamma h_{i}}\left(\sum_{j=1}^{m} w_{i j} x_{j, k}-\gamma \nabla f_{i}\left(x_{i, k}\right)\right)
$$

- γ : the constant stepsize chosen by agents,
- $\operatorname{prox}_{\gamma h_{i}}$: the proximal operator ${ }^{1}$ of h_{i} with the parameter γ.
- Convergence result ($\bar{x}_{k}=\frac{\mathbf{1 1}^{T}}{m} x_{k}, \gamma \leq 1 / L$):

$$
\max \{\underbrace{\left\|\mathbf{x}^{k}-\overline{\mathbf{x}}^{k}\right\|}_{\text {Disagreement }}, \underbrace{\left|f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right|}_{\text {Optimality gap }}\} \leq \mathcal{O}(1 / k)+\mathcal{O}(\gamma)
$$

- steady state error $O(\gamma)$,
- need bounded (sub)gradient assumption: $\left\|\nabla f_{i}\right\|<C$
- Only update primal variables; can we do it from dual or even primal-dual simulaneously?
${ }^{1} \mathbf{p r o x}_{\gamma \phi}=\arg \min _{u}\left(\phi(u)+\frac{1}{2 \gamma}\|u-x\|^{2}\right)$
Distributed primal-dual gradient methods

Distributed Optimization with Regularization

- Recalling the following original problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} f_{i}(x)+g_{i}(x), \tag{P}
\end{equation*}
$$

Figure: A network model

- Equivalent to solve the problem as follows

$$
\min _{\mathbf{x} \in \mathcal{R}^{m}} f(\mathbf{x})=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)+g_{i}\left(x_{i}\right)
$$

$$
\underbrace{\text { s.t. }(\mathbf{I}-\mathbf{W})^{1 / 2} \mathbf{x}=0}_{\text {consensus when null }\{\mathbf{I}-\mathbf{W}\}=\operatorname{span}\{\mathbf{1}\}}
$$

$-\mathbf{x}=\left[x_{1}, x_{2}, \ldots x_{m}\right]^{T}$: local estimates of agents for global optimum x^{\star}.

Derivation of Distributed Primal-dual gradient methods

- KKT conditions $\left(\mathbf{L}=(\mathbf{I}-\mathbf{W})^{\mathbf{1 / 2}}\right)$

$$
0 \in\left[\begin{array}{cc}
\nabla f+\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Using the (generalized) forward-backward splitting, we have

$$
\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & \mathbf{L} \\
\mathbf{L} & \frac{1}{\tau} I
\end{array}\right]+\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\right)\left[\begin{array}{l}
x^{k+1} \\
y^{k+1}
\end{array}\right]=\left(\left[\begin{array}{cc}
\frac{1}{\gamma} I & \mathbf{L} \\
\mathbf{L} & \frac{1}{\tau} I
\end{array}\right]-\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{l}
x^{k} \\
y^{k}
\end{array}\right]
$$

Derivation of Distributed Primal-dual gradient methods

- KKT conditions $\left(\mathbf{L}=(\mathbf{I}-\mathbf{W})^{\mathbf{1 / 2}}\right)$

$$
0 \in\left[\begin{array}{cc}
\nabla f+\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- can be rewritten as

$$
\begin{aligned}
& x^{k+1}=\operatorname{prox}_{\gamma g}\left(x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma \mathbf{L}\left(2 y^{k+1}-y^{k}\right)\right) \\
& y^{k+1}=y^{k}-\tau \mathbf{L} x^{k}
\end{aligned}
$$

Derivation of Distributed Primal-dual gradient methods

- KKT conditions $\left(\mathbf{L}=(\mathbf{I}-\mathbf{W})^{\mathbf{1 / 2}}\right)$

$$
0 \in\left[\begin{array}{cc}
\nabla f+\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{c}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- can be rewritten as

$$
\begin{aligned}
& x^{k+1}=\operatorname{prox}_{\gamma g}\left(x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma \mathbf{L}\left(2 y^{k}-y^{k-1}\right)\right) \\
& y^{k+1}=y^{k}-\tau \mathbf{L} x^{k+1}
\end{aligned}
$$

Derivation of Distributed Primal-dual gradient methods

- KKT conditions $\left(\mathbf{L}=(\mathbf{I}-\mathbf{W})^{\mathbf{1 / 2}}\right)$

$$
0 \in\left[\begin{array}{cc}
\nabla f+\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- can be rewritten as ($\tau=1 / \gamma$)

$$
\begin{aligned}
x^{k+1} & =\operatorname{prox}_{\gamma g}\left(\mathbf{W} x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma \mathbf{L} y^{k}\right) \\
y^{k+1} & =y^{k}-1 / \gamma \mathbf{L} x^{k+1}
\end{aligned}
$$

Derivation of Distributed Primal-dual gradient methods

- KKT conditions $\left(\mathbf{L}=(\mathbf{I}-\mathbf{W})^{\mathbf{1 / 2}}\right)$

$$
0 \in\left[\begin{array}{cc}
\nabla f+\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- which can be rewritten as

$$
0 \in \underbrace{\left[\begin{array}{cc}
\nabla f & 0 \\
0 & 0
\end{array}\right]}_{:=F}\left[\begin{array}{l}
x \\
y
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\partial g & \mathbf{L} \\
-\mathbf{L} & 0
\end{array}\right]}_{:=M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- can be rewritten as ($\left.\tau=1 / \gamma, y^{\prime k}=\mathbf{L} y^{k}\right)$

$$
\begin{aligned}
x^{k+1} & =\operatorname{prox}_{\gamma g}\left(\mathbf{W} x^{k}-\gamma \nabla f\left(x^{k}\right)-\gamma y^{\prime k}\right) \\
y^{\prime k+1} & =y^{\prime k}-\tau \mathbf{L}^{2} x^{k+1}
\end{aligned}
$$

Primal-dual distributed gradient method

ID-FBBS Algorithm

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\operatorname{prox}_{\gamma g}\left(\mathbf{W} \mathbf{x}_{k}-\gamma\left(\nabla f\left(\mathbf{x}_{k}\right)+\mathbf{y}_{k}\right)\right) \\
& \mathbf{y}_{k+1}=\mathbf{y}_{k}+\frac{1}{\gamma}(\mathbf{I}-\mathbf{W}) \mathbf{x}_{k+1}
\end{aligned}
$$

- \mathbf{y}_{k} is the dual variable whose sum is maintained at zero.

1. Initialization: \forall agent $i \in \mathcal{V}: x_{i, 0}$ randomly assigned; $\sum_{i \in \mathcal{V}} y_{i, 0}=0$.
2. Primal Update: \forall agent $i \in \mathcal{V}$, computes:

$$
x_{i, k+1}=\operatorname{prox}_{\gamma g_{i}}\left(\sum_{j \in \mathcal{N}_{i}} w_{i j} x_{j, k}-\gamma\left(\nabla f_{i}\left(x_{i, k}\right)+y_{i, k}\right)\right)
$$

3. Dual Update: \forall agent $i \in \mathcal{V}$, computes:

$$
y_{i, k+1}=y_{j, k}+\frac{1}{\gamma} \sum_{j \in \mathcal{N}_{i}} w_{i j}\left(x_{i, k+1}-x_{j, k+1}\right)
$$

4. Set $k \rightarrow k+1$ and go to Step 2.

Distributed primal-dual gradient methods

Connections to Existing Algorithms

- Recalling the ID-FBBS Algorithm

$$
\begin{align*}
& \mathbf{x}_{k+1}=\mathbf{W} \mathbf{x}_{k}-\gamma\left(\nabla f\left(\mathbf{x}_{k}\right)+\mathbf{y}_{k}\right) \tag{a}\\
& \mathbf{y}_{k+1}=\mathbf{y}_{k}+\frac{1}{\gamma}(\mathbf{I}-\mathbf{W}) \mathbf{x}_{k+1} \tag{b}
\end{align*}
$$

- Let $\gamma \mathbf{y}_{k}=\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{y}_{k}^{\prime}$, the above algorithm can be rewritten as

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{W} \mathbf{x}_{k}-\gamma \nabla f\left(\mathbf{x}_{k}\right)-\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{y}_{k}^{\prime} \\
\mathbf{y}_{k+1}^{\prime} & =\mathbf{y}_{k}^{\prime}+\sqrt{\mathbf{I}-\mathbf{W}} \mathbf{x}_{k+1}
\end{aligned}
$$

- Equivalent to applying the Arrow-Hurwicz-Uzawa Method ${ }^{2}$

$$
\left\{\begin{array}{l}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\gamma \nabla_{\mathbf{x}} L\left(\mathbf{x}, \mathbf{y}_{k}^{\prime}\right) \\
\mathbf{y}_{k+1}^{\prime}=\mathbf{y}_{k}^{\prime}+\gamma \nabla_{\mathbf{y}^{\prime}} L\left(\mathbf{x}_{k+1}, \mathbf{y}^{\prime}\right)
\end{array}\right.
$$

- where $L\left(\mathbf{x}, \mathbf{y}^{\prime}\right)=f(\mathbf{x})+\frac{1}{\gamma} \mathbf{x}^{T} \sqrt{\mathbf{I}-\mathbf{W}} \mathbf{y}^{\prime}+\frac{1}{2 \gamma} \mathbf{x}^{T}(\mathbf{I}-\mathbf{W}) \mathbf{x}$

[^0]
Connections to Existing Algorithms

- Taking the augmented Lagrangian as follows:

$$
L\left(\mathbf{x}, \mathbf{y}^{\prime}\right)=f(\mathbf{x})+\frac{1}{\gamma} \mathbf{x}^{T}(\mathbf{I}-\mathbf{W}) \mathbf{y}^{\prime}+\frac{1}{2 \gamma} \mathbf{x}^{T}\left(\mathbf{I}-\mathbf{W}^{2}\right) \mathbf{x}
$$

Applying the Arrow-Hurwicz-Uzawa Method leads to

$$
\begin{align*}
\mathbf{x}_{k+1} & =\mathbf{W}^{2} \mathbf{x}_{k}-\gamma \nabla f\left(\mathbf{x}_{k}\right)-(\mathbf{I}-\mathbf{W}) \mathbf{y}_{k}^{\prime} \tag{c}\\
\mathbf{y}_{k+1}^{\prime} & =\mathbf{y}_{k}^{\prime}+(\mathbf{I}-\mathbf{W}) \mathbf{x}_{k+1} \tag{d}
\end{align*}
$$

- Evaluating (c) at $k+1$ and k, respectively and eliminating \mathbf{y}^{\prime} using (d), simple calculation gives

$$
\mathbf{x}_{k+2}-\mathbf{W} \mathbf{x}_{k+1}=\mathbf{W}\left(\mathbf{x}_{k+1}-\mathbf{W} \mathbf{x}_{k}\right)+\gamma\left(\mathbf{g}\left(\mathbf{x}_{k+1}\right)-\mathbf{g}\left(\mathbf{x}_{k}\right)\right)
$$

Let $\gamma \mathbf{y}_{k+1}=\mathbf{x}_{k+2}-\mathbf{W} \mathbf{x}_{k+1}$. Then, we recover

$$
\text { the original AugDGM }\left\{\begin{array}{l}
\mathbf{x}_{k+1}=\mathbf{W} \mathbf{x}_{k}-\gamma \mathbf{y}_{k} \\
\mathbf{y}_{k+1}=\mathbf{W} \mathbf{y}_{k}+\mathbf{g}\left(\mathbf{x}_{k+1}\right)-\mathbf{g}\left(\mathbf{x}_{k}\right) .
\end{array}\right.
$$

A Unified Primal-Dual Framework

- Design a proper augmented Lagrangian:

$$
L(\mathbf{x}, \mathbf{y})=f(\mathbf{x})+\frac{1}{\gamma} \mathbf{x}^{T} \mathbf{A} \mathbf{y}+\frac{1}{2 \gamma}\|\mathbf{x}\|_{\mathbf{B}}^{2}
$$

- Applying the Arrow-Hurwicz-Uzawa Method leads to

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(\mathbf{I}-\mathbf{B}) \mathbf{x}_{k}-\gamma \nabla f\left(\mathbf{x}_{k}\right)-\mathbf{A} \mathbf{y}_{k} \\
\mathbf{y}_{k+1} & =\mathbf{y}_{k}+\mathbf{A} \mathbf{x}_{k+1}
\end{aligned}
$$

- Properly choose \mathbf{A} and \mathbf{B} such that consensus can be ensured, we can easily come up with new distributed algorithms
- What conditions on \mathbf{A}, \mathbf{B} leads to convergence?

A Unified Algorithmic Framework

A unified $A B C$ algorithm ${ }^{3}$

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\mathbf{A} \mathbf{x}^{k}-\gamma \mathbf{B} \nabla f\left(\mathbf{x}^{k}\right)-\mathbf{y}^{k}, \\
\mathbf{y}^{k+1} & =\mathbf{y}^{k}+\mathbf{C} \mathbf{x}^{k+1}
\end{aligned}
$$

- where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are three weight matrices to be properly defined.

The above unified algorithm subsumes many existing algorithms.

Algorithm	A	B	C
ID-FBBS/EXTRA	$\frac{1}{2}(\mathbf{I}+\mathbf{W})$	\mathbf{I}	$\frac{1}{2}(\mathbf{I}-\mathbf{W})$
NIDS/Exact Diffusion	$\frac{1}{2}(\mathbf{I}+\mathbf{W})$	$\frac{1}{2}(\mathbf{I}+\mathbf{W})$	$\frac{1}{2}(\mathbf{I}-\mathbf{W})$
AugDGM/NEXT	\mathbf{W}^{2}	\mathbf{W}^{2}	$(\mathbf{I}-\mathbf{W})^{2}$
DIGing/Harnessing	\mathbf{W}^{2}	\mathbf{I}	$(\mathbf{I}-\mathbf{W})^{2}$

${ }^{3}$ [Xu et al, IEEE TSP'21]
Distributed primal-dual gradient methods

Sublinear Convergence Rate

Let \mathbb{S}^{m} be the set of $m \times m$ symmetric matrices.

- Assumptions
- Cost function $\left\{f_{i}\right\}: L$-smooth;
- Weight Matrix:
i) $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{S}^{m}$ and $\mathbf{C} \succeq 0$,
ii) $\mathbf{A}=\mathbf{B}, \mathbf{B C}=\mathbf{C B}, 0 \preceq \mathbf{A} \preceq \mathbf{I}$,
iii) $\operatorname{span}\{\mathbf{1}\}=\operatorname{null}\{\mathbf{C}\} \subseteq \operatorname{null}\{\mathbf{I}-\mathbf{A}\}$.

Theorem (Sublinear rate for the unified algorithm)
Let $\left\{\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right\}_{k \geq 0}$ be the iterates generated by the above algorithm with $\mathbf{1}^{T} \mathbf{y}_{0}=0$. Suppose the above Assumptions hold. Then, if $\gamma=\frac{1}{L}$, the algorithm converges at a sublinear rate of

$$
\max \left\{\frac{L\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|^{2}}{k+1}, \frac{1}{\sqrt{\eta(\mathbf{C})}} \frac{\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|\left\|\nabla f\left(\mathbf{x}^{\star}\right)\right\|}{k+1}\right\}
$$

where $\eta(\mathbf{C}):=\frac{\lambda_{\min }(\mathbf{C})}{\lambda_{\max }(\mathbf{C})}$ denotes the eigengap of the matrix \mathbf{C}.

Some Observations

The convergence rate has the following structure ${ }^{4}$
$\max \{\underbrace{\frac{L\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|^{2}}{k+1}}_{\text {computation }}, \underbrace{\frac{1}{\sqrt{\eta(\mathbf{C})}} \frac{\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|\left\|\nabla f\left(\mathbf{x}^{\star}\right)\right\|}{k+1}}_{\text {communication }}\} \stackrel{\mathbf{g}\left(\mathbf{x}^{\star}\right)=0}{\Rightarrow})$.

- $1 / \sqrt{\eta} \approx$ the diameter of the network for simple networks, e.g., line graphs
- $\left\|\nabla f\left(\mathbf{x}^{\star}\right)\right\|$ encodes the "heterogeneity" of functions; $\mathbf{g}\left(\mathbf{x}^{\star}\right)=0$ implies
- Case 1: When all agents share common solution, e.g., the distribution of all local data sets are similar.
- Case 2: When a spanning tree algorithm is employed, e.g, exact average of local data, e.g., local gradients.
- The algorithm reduces to the centralized one!

[^1]
Linear Convergence Rate

Let \mathbb{S}^{m} be the set of $m \times m$ symmetric matrices.

- Assumptions
- Cost function $\left\{f_{i}\right\}$: L-smooth and μ-strongly convex;
- Weight Matrix:
i) $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{S}^{m}$ and $\mathbf{C} \succeq 0$,
ii) $\mathbf{A}=\mathbf{B}, \mathbf{B C}=\mathbf{C B}, \mathrm{B}^{2} \preceq \mathbf{I}-\mathbf{C}$,
iii) $\operatorname{span}\{\mathbf{1}\}=\operatorname{null}\{\mathbf{C}\} \subseteq \operatorname{null}\{\mathbf{I}-\mathbf{A}\}$.

Theorem (Linear rate for the unified algorithm)

Let $\left\{\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right\}_{k \geq 0}$ be the iterates generated by the above algorithm with $\mathbf{1}^{T} \mathbf{y}_{0}=0$. Suppose the above Assumptions hold. Then, if $\gamma=\frac{2}{L+\mu}$, the algorithm converges at a linear rate of $\mathcal{O}\left(\sigma^{k}\right)$ with

$$
\sigma=\max \left\{\frac{\kappa-1}{\kappa+1}, 1-\lambda_{\min }(\mathbf{C})\right\}
$$

where $\lambda_{\min }(\mathbf{C})$ denotes the connectivity of the graph.

Simulation Setting

A Canonical Example of Distributed Estimation

- Overall loss function

$$
F=\sum_{i=1}^{m}\left(\left\|z_{i}-M_{i} \theta\right\|^{2}+\lambda_{i}\|\theta\|_{1}\right)
$$

- $M_{i} \in \mathcal{R}^{s \times d}$: measurement matrix
- z_{i} : noisy observation of agent i
- λ_{i} : regularization parameter.
- Metropolis-Hastings protocol ${ }^{5}$

$$
w_{i j}= \begin{cases}\frac{1}{2 \cdot \max \left\{d_{i}, d_{j}\right\}}, & \text { if }(i, j) \in \mathcal{E} \\ 1-\sum_{j \in \mathcal{N}_{i}} w_{i j}, & \text { if } i=j \\ 0, & \text { otherwise, }\end{cases}
$$

- d_{i} : the degree of agent i.

[^2]
Performance Evaluation

Parameter Setting: $d=10, s=1, m=50, \lambda_{i}=0.02, \forall i \in \mathcal{V}$; $M_{i} \in \mathcal{R}^{r \times d}$: a uniform distribution; Gaussian Noise: $\mathcal{N}(0,0.1)$

Figure: $\operatorname{FPR}\left(e=\frac{\left\|x_{k}-x^{*}\right\|^{2}}{\left\|x_{0}-x^{*}\right\|^{2}}\right)$ Versus Iterations

References

Boyd，Stephen，and Lieven Vandenberghe．Convex optimization． Cambridge University press， 2004.
Dimitri P．，Bertsekas，Angelia，Nedich and Asuman E．，Ozdaglar． Convex Analysis and Optimization．Athena Scientific， 2003.
Angelia，Nedich．Lecture Notes for Convex Optimization．University of Illinois Urbana－Champaign， 2008.
Ryan Tibshirani，Lecture Notes for Convex Optimzation．Carnegie Mellon University， 2018.
囯 Yuxin Chen，Lecture Notes for Large－Scale Optimization for Data Science．Princeton University， 2018.
嗇 Bubeck，Sébastien．（2014）．Theory of Convex Optimization for Machine Learning．
囯 Emmanuel Candes．（2015）．Lecture Notes for Advanced Topics in Convex Optimizationg．Stanford University， 2015.
Distributed primal－dual gradient methods

[^0]: ${ }^{2}$ K.J. Arrow, L. Hurwicz, and H. Uzawa, Stanford University Press, 1958

[^1]: ${ }^{4}$ Refer to [Xu et al, AISTATS'20; TSP'21] for more details.
 Distributed primal-dual gradient methods

[^2]: ${ }^{5}$ slightly modified to ensure the positivity.

