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Contents in the lecture

Introduction to deep neural network (DNN) and various training modes (Part I)

• Single-node training
• Parallel/distributed training
• Decentralized training

Making decentralized algorithms practical for large-scale deep training (Part II)

• Exponential graphs
• Primal-dual decentralized methods
• Multiple gossip loops/Periodic global averaging

Other advanced topics and BlueFog (Part III)

• Large-batch deep training
• An open source decentralized deep training framework: BlueFog
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Making decentralized methods practical: review

Which topology shall we use to organize all GPUs?

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2 ) Ω(n3)

Static Exp. Ω̃(1) Ω̃(n3)
One-peer Exp. Ω(1) Ω̃(n3)
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Making decentralized methods practical: review

How to accelerate D-SGD when non-iid data exists? Exact-Diffusion

non-iid scenario Exact-Diffusion D-SGD

strongly-convex Ω( ρ
2n

1−ρ ) Ω( ρ2n
(1−ρ)2 )

generally-convex Ω( ρ4n3

(1−ρ)2 ) Ω( ρ4n3

(1−ρ)4 )

non-convex N.A. Ω( ρ4n3

(1−ρ)4 )
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Making decentralized methods practical: review

How to accelerate D-SGD over extremely sparse topology (i.e., ρ→ 1)?

Decentralized SGD with Periodic Global Averaging

scenario DSGD-PGA D-SGD

iid data Ω(ρ4n3H2) Ω( ρ4n3

(1−ρ)2 )

non-iid data Ω(ρ4n3H4) Ω( ρ4n3

(1−ρ)4 )

5 / 61



Part III: Other advanced topics and BlueFog

• Sec. 1 Large-batch deep training
• Sec. 2 An open source decentralized deep training framework: BlueFog
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Advanced topics

• Decentralized DL with directed topology (Assran et al., 2019; Pu et al.,
2020; Xin and Khan, 2018)

• Decentralized DL with time-varying topology (Koloskova et al., 2020;
Nedic et al., 2017)

• Decentralized DL with severe data heterogeneity (Tang et al., 2018a; Lin
et al., 2021; Xin et al., 2020; Lu et al., 2019)

• Decentralized DL with asynchrony and delays (Lian et al., 2018; Zhang
and You, 2019; Wu et al., 2017)

• Decentralized DL with compression and quantization (Koloskova et al.,
2019a,b; Tang et al., 2018b; Liu et al., 2020; Kovalev et al., 2021)

Unfortunately we cannot cover these topics in this lecture.
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But let’s discuss an important topic that is easy to be ignored:

Decentralized large-batch deep training
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Motivation

• Total batch size increases as the number of nodes (GPUs) increase

• Suppose each GPU takes 256 samples per iteration:

(8 GPUs:) 256× 8 = 2K (samples)
(64 Gpus:) 256× 64 = 16K (samples)

• Large-batch training is unavoidable when more nodes participate in
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Decentralized momentum SGD

• Recall the distributed optimization problem

min
x∈Rd

f(x) = 1
n

n∑
i=1

[fi(x) = Eξi∼DiF (x; ξi)].

• Recall the D-SGD algorithm

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

wijx
(k+ 1

2 )
j (Partial averaging)

• The momentum accelerated D-SGD is more popular in real deep learning
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Decentralized momentum SGD

• The above DmSGD method is widely used in decentralized deep training1

• Reduces to D-SGD when β = 0

1[Lian et.al., 2018; Assran et.al., 2019; Gao and Huang, 2020]
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Large-batch DmSGD has poor performance

Experimental setting: CIFAR-10; ResNet-20

Small-batch: 2K batch-size per iteration
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DmSGD and PmSGD have almost the same performance with small-batch.
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Large-batch DmSGD has poor performance

Experimental setting: CIFAR-10; ResNet-20

Large-batch setting: 8K batch-size per iteration
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DmSGD drops 1% performance compared to PmSGD with large-batch.

Why does DmSGD have severe performance degradation than PmSGD?
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Limiting bias of DmSGD

The limiting bias of DSGD/DmSGD (s.c. cost) suffers from two sources:

lim
k→∞

n∑
i=1

E‖x(k)
i − x

?‖2 = sto. bias + inconsist. bias

• stochastic bias is cuased by the gradient noise
• inconsistency bias is caused by the data heterogeneity (different Di)
• As batch-size increases, sto. bias will vanish and incost. bias will dominate

Proposition

The inconsistency bias dominates the convergence of large-batch DmSGD.
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Limiting bias of DmSGD

For example, the limiting bias of DSGD (s.c. cost) is (Yuan et al., 2020):

lim
k→∞

n∑
i=1

E‖x(k)
i − x

?‖2 = O
(
γ2σ2

n
+ γ2σ2

1− ρ︸ ︷︷ ︸
sto. bias

+ γ2b2

(1− ρ)2︸ ︷︷ ︸
inconsist. bias

)

• where b2 = 1
n

∑n

i=1 ‖∇fi(x
?)‖2 denotes data heterogeneity

• when each Di is identical, it holds that fi(x) = fj(x) for any i and j,
which implies that ∇fi(x?) = 0 and hence b2 = 0

• in other words, b2 = 0 for when each Di is identical (i.i.d. scenario)

• σ2 → 0 as batch-size goes large, and hence inconsist. bias dominates
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DmSGD incurs severe inconsistency bias

We rewrite full-batch DmSGD recursion as follows:

x
(k+1)
i =

∑
j∈Ni

wij

(
x

(k)
j − γ∇fj(x

(k)
j )
)

︸ ︷︷ ︸
DSGD

(DmSGD)

+ β
(
x

(k)
i −

∑
j∈Ni

wijx
(k−1)
j

)
︸ ︷︷ ︸

momentum

, ∀i ∈ [n].

• No stochastic bias in the above recursion (full-batch gradient)
• momentum will not vanish as x(k)

i 6=
∑

j∈Ni
wijx

(k−1)
j as k →∞;

• momentum will incur additional inconsistency bias.

16 / 61



DmSGD incurs severe inconsistency bias

Proposition (Yuan et al. (2021))

The full-batch DmSGD (S.C. cost) has the following inconsistency bias:

lim
k→∞

n∑
i=1

‖x(k)
i − x

?‖2 = O
(

γ2b2

(1− β)2(1− ρ)2

)
,

where b2 = (1/n)
∑n

i=1 ‖∇fi(x
?)‖2 denotes the data inconsistency between

nodes, and β is the momentum coefficient.

• Recall that full-batch D-SGD has limiting bias O(γ2b2/(1− ρ)2)

• The momentum in DmSGD amplifies the inconsistency bias as β ∈ (0, 1)

• DmSGD suffers from significant inconsist. bias when β → 1

• Such amplified inconsist. bias results in notable performance degradation
in large-batch scenario
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DmSGD incurs severe inconsistency bias: verification
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• A numerical verification: full-batch linear regression

• DmSGD is faster but suffers from more inconsistency bias (as expected)
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Remove the momentum-incurred bias

We modify the full-batch DmSGD a little bit (Yuan et al., 2021)2:

x
(k+1)
i =

∑
j∈Ni

wij

(
x

(k)
j − γ∇fj(x

(k)
j )
)

︸ ︷︷ ︸
DSGD

(DecentLaM)

+ β
(
x

(k)
i − x

(k−1)
i

)
︸ ︷︷ ︸

momentum

, ∀i ∈ [n].

• x
(k)
i − x

(k−1)
i → 0 as k →∞;

• momentum-incurred bias will vanish as k →∞;
• we name the above algorithm as full-bath DecentLaM

2K. Yuan, Y. Chen, X. Huang, Y. Zhang, P. Pan, Y. Xu, and W. Yin, “DecentLaM: Decentralized Stochastic
Momentum SGD for Large-batch Deep Training”, to appear in ICCV 2021
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Another useful algorithm derivation

• We let x = [x1, · · · , xn]T ∈ Rn×d and f(x) =
∑n

i=1 fi(xi)

• We assume W is positive-definite and doubly stochastic, and fi(x) is s.c.

• We introduce s = W−
1
2 x and hence x = W

1
2 s

• The full-batch DSGD algorithm can be rewritten as

x(k+1) = W (x(k) − γ∇f(x(k)))

⇐⇒ s(k+1) = W s(k) − γW
1
2∇f(W

1
2 s(k))

= W s(k) − γ∇sf(W
1
2 s(k))

= s(k) − γ
(
∇sf(W

1
2 s(k))− 1

γ
(I −W )s(k))︸ ︷︷ ︸

gradient
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Another useful algorithm derivation

• We conclude that DSGD is essentially a standard GD for problem

min
s

f(W
1
2 s(k)) + 1

2γ ‖s‖
2
I−W

• When s? is achieved, we can derive x? = W
1
2 s?

• Interpret DSGD as GD is critical; many techniques used in GD (such as
momentum acceleration) can also be integrated to DSGD

• Add momentum to DSGD is equivalent to add momentum to GD:

g(k)
s = ∇sf(W

1
2 s(k))− 1

γ
(I −W )s(k)

m(k+1)
s = βm(k)

s + g(k)
s

s(k+1) = s(k) − γm(k+1)
s

x(k+1) = W
1
2 s(k+1)
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Another useful algorithm derivation

• Simplify the above recursions, we achieve

g(k) = ∇f(x(k))− 1
γ

(I −W )x(k)

m(k+1) = βm(k) + g(k)

x(k+1) = x(k) − γm(k+1)

• Combining all recursions, we achieve

x(k+1) = W (x(k) −∇f(x(k))) + β(x(k) − x(k−1))
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DecentLaM algorithm with stochastic gradient

where g(k)
i is computed as follows:

g
(k)
i = 1

γ
x

(k)
i −

1
γ

∑
j∈Ni

wij
(
x

(k)
j −γ∇F (x(k)

j ; ξ(k)
j )
)
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Remove the momentum-incurred bias

Proposition (Yuan et al. (2021))

Full-batch DecentLaM (S.C. cost) has an inconsistency bias as follows:

lim
k→∞

n∑
i=1

‖x(k)
i − x

?‖2 = O
(

γ2b2

(1− ρ)2

)
,

• Recall that full-batch DmSGD has limiting bias O( γ2b2

(1−ρ)2(1−β)2 )

• DecentLaM corrects the momentum-incurred bias

• DecentLaM has evident superiority when b2 is large, or β → 1, or ρ→ 1

• With smaller inconsist. bias, DecentLaM is expected to outperform
DmSGD in large-batch scenario
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Remove the momentum-incurred bias: verification
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• A numerical verification: full-batch linear regression

• DecentLaM is as fast as DmSGD, and as accurate as DSGD
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Go back to the large-batch Cifar-10 Experiment

Experimental setting: CIFAR-10; ResNet-20

Large-batch setting: 8K batch-size per iteration
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DecentLaM is much better than DmSGD, and is even better than PmSGD.

Conjecture: For large-batch scenario in which the gradient noise is small,
inconsistency bias can help the algorithm to escape the saddle point

26 / 61



Formal convergence theory of DecentLaM

Assumption
(A.1) Each fi(x) is L-smooth; (A.2) The gradient noise is unbiased and has
bounded variance; (A.3) W is positive definite and doubly-stochastic; (A.4)
Data heterogeneity is bounded: 1

n

∑n

i=1 ‖∇fi(x)−∇f(x)‖2 ≤ b̂2

Theorem
With appropriate constant learning rate γ (see the paper), DecentLaM will
converge at

1
T

T−1∑
k=0

E‖ 1
n

n∑
i=1

∇fi(x̄(k))‖2

=O
( 1− β

γT︸ ︷︷ ︸
convg. rate

+ γσ2

n(1− β) + γ2σ2

1− ρ︸ ︷︷ ︸
sto. bias

+ γ2b̂2

(1− ρ)2︸ ︷︷ ︸
inconsist.bias

)
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Formal convergence theory of DecentLaM

• With decaying γ, DecentLaM will converge at rate O(1/
√
nT )

• The inconsistency bias of DecentLaM is independent of momentum

• We also establish the convergence rate of DecentLaM with strongly
convex cost, see (Yuan et al., 2021)

• W is not necessarily positive-definite in experiments; but it has to be
symmetric
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Inconsistency bias comparison between various methods

Strongly-convex Non-convex

DmSGD3 N.A. O
(
γ2M2

(1−β)2

)
DmSGD4 O

(
γ5/2M2

(1−β)6

)
O
(
γ2M2

(1−β)4

)
DmSGD5 O

(
γ2b2

(1−β)2

)
N.A

DA-DmSGD6 N.A. O
(

γ2 b̂2

(1−β)2

)
AWC-DmSGD7 O

(
γ2M2

(1−β)2

)
O
(
γ2M2

(1−β)4

)
SlowMo8 N.A N.A

QG-DmSGD9 N.A O(γ2b̂2)

DecentLaM (Ours) O(γ2b2) O(γ2b̂2)

3(Gao and Huang, 2020)
4(Singh et al., 2020)
5Derived in this work
6(Yu et al., 2019)
7(Balu et al., 2020)
8(Wang et al., 2019)
9(Lin et al., 2021), a concurrent work
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Comparison with decentralized primal-dual methods

Strongly-convex Non-convex

D2/E-D10 0 0
Gradient Tracking11 0 0
DecentLaM (Ours) O(γ2b2) O(γ2b̂2)

• Theoretically, primal-dual methods can completely remove inconsistency
bias, which is better than DecentLaM

• Empirically, they are worse than primal methods in validation accuracy

• Conjecture I: no effective acceleration exists for P.-D.

• Conjecture II: some inconsistency bias is beneficial for generalization

• It is still an open question to make decentralized P.-D. useful in DL

10(Yuan et al., 2019; Li et al., 2019; Tang et al., 2018a; Yuan et al., 2020)
11(Xu et al., 2015; Di Lorenzo and Scutari, 2016; Nedic et al., 2017; Qu and Li, 2018)
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Experiments in Deep Training: Image classification

Image Classification:

• Model: ResNet-50 (∼25.5M parameters)
• Dataset: ImageNet-1K (1000 classes)
• Size: 1,281,167 training images and 50,000 validation images
• Hardware: 8 GPU × 8 machines
• We will test the proposed algorithm with batch-size 2K, 8K, 16K, and 32K
• Batchsize ≥ 8K is regarded as large batch-size
• Baselines: PmSGD, PmSGD + LARS (layer-wise learning rate), DmSGD
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Experiments with batchsize 2K (test accuracy)
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• DecentLaM has similar performance to DmSGD (sto. bias dominates)
• Decentralized methods are no worse than PmSGD
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Experiments with batchsize 8K (test accuracy)
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• DecentLaM outperforms DmSGD marginally (sto. bias diminishes)
• DecentLaM also outperforms PmSGD
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Experiments with batchsize 16K (test accuracy)
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• DecentLaM outperforms DmSGD significantly (incosist. bias diminishes)
• DecentLaM outperforms PmSGD significantly; even better than LARS
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Experiments with batchsize 32K (test accuracy)
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• DecentLaM outperforms DmSGD significantly (incosist. bias diminishes)
• DecentLaM outperforms PmSGD significantly; even better than LARS
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Comparison with more baselines

method Batch Size
2k 8k 16k 32k

PmSGD 76.32 76.08 76.27 75.27
PmSGD+LARS 76.16 75.95 76.65 75.63

DmSGD 76.27 76.01 76.23 74.97
DA-DmSGD 76.35 76.19 76.62 75.51

AWC-DmSGD 76.29 75.96 76.31 75.37
SlowMo 76.30 75.47 75.53 75.33

QG-DmSGD 76.23 75.96 76.60 75.86
D2-DmSGD 75.44 75.30 76.16 75.44

DecentLaM (Ours) 76.43 76.19 76.73 76.22

Table: Top-1 validation accuracy when training ResNet-50 with different batch sizes.

• DecentLaM can outperform PmSGD (esp. with large-batch)
• D2-DmSGD is worse than QG-DmSGD and DecentLaM12

12Similar result was also reported in [Lin et.al., 2021]
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Comparison across different DL models

method ResNet-18 ResNet-34 ResNet-50 MobileNet-v2 EfficientNet

PmSGD 68.3 72.9 76.3 69.5 78.1
DmSGD 68.7 72.4 76.2 72.1 77.5

DecentLaM 70.5 73.4 76.7 72.2 78.3

Table: Top-1 validation accuracy when training ImageNet with 16K batchsize.

• DecentLaM outperforms DmSGD with large-batch (as expected)

• DecentLaM also outperforms PmSGD with better generalization error; a
surprising result that cannot be explained by current optimization theory

• Conjecture: certain amount of inconsist. bias is beneficial
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Running time saving
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Figure: Runtime comparison on ResNet-50 with different batch sizes and network
bandwidth (Left: 10Gbps; Right: 25Gbps). Each column indicates the averaged
iteration runtime of 500 iterations. The thick part highlights the comm. overhead.
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Experiments in object detection

Dataset PASCAL VOC COCO
Model R-Net F-RCNN R-Net F-RCNN

PmSGD 79.0 80.3 36.2 36.5
PmSGD+LARS 78.5 79.8 35.7 36.2

DmSGD 79.1 80.5 36.1 36.4
DA-DmSGD 79.0 80.5 36.4 37.0
DecentLaM 79.3 80.7 36.6 37.1

Table: Comparision with different models on PASCAL VOC and COCO datasets.
R-Net and F-RCNN refer to RetinaNet and Faster-RCNN respectively.

More results are available in the paper.
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Summary

• DmSGD has significant accuracy degradation with large batch-size

• Momentum in DmSGD incurs significant inconsistency bias

• We propose DecentLaM to correct the momentum-incurred bias

• DecentLaM promises both fast and high-quality large-batch training
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Part III: Other advanced topics and BlueFog

• Sec. 1 Large-batch deep training
• Sec. 2 An open source decentralized deep training framework: BlueFog
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BlueFog: Making Decentralized Algorithms Practical for
Optimizaiton and Deep Learning

A library available at https://github.com/Bluefog-Lib/bluefog

Aug 5, 2021, Zhejiang University
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Main features

• BlueFog is open-source; supports parallel/decentralized methods

• Supports any dynamic and static network topology

• Supports efficient implementation of neighbor-allreduce (partial averaging)

• Suppose both CPU and GPU training through integration with PyTorch

• Wrap up torch optimizers; several codes to run decentralized deep training

• Detailed tutorials with Jupyter notebook on how to use it:

https://github.com/Bluefog-Lib/bluefog-tutorial
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DNN example

BlueFog has a high-level API that wraps around any torch optimizer.
Example:

import torch

import bluefog.torch as bf

bf.init()

...

optimizer = optim.SGD(model.parameters(), lr=lr*bf.size())

optimizer = bf.DistributedNeighborAllreduceOptimzer( \

optimizer, model=model)

...

# Torch training code

BlueFog also provides optimizers: Distributed Allreduce, Distributed
Hierarchical Neighbor Allreduce, etc.
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SPMD (single program, multiple data)

One code for all nodes; different nodes have different data and unique ranks.

# hello_world.py

import bluefog.torch as bf

bf.init()

print("I am rank {} in size {}".format(bf.rank(), bf.size()))

> bfrun -np 2 python hello_world.py

I am rank 1 in size 2

I am rank 0 in size 2
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Partial averaging

Example: compute the average of ranks of the nodes

import torch

import bluefog.torch as bf

bf.init()

x = torch.Tensor([bf.rank()])

for _ in range(100):

x = bf.neighbor_allreduce(x)

print("rank {} has x={}".format(bf.rank(), x))

Defaults:

• bf.init() creates a static exponential graph
• neighbor-averaging weights are set to 1

neighbors+1 for every incoming
neighbors and the node itself
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> bfrun -np 10 python neighbor_avg.py

rank 0 has x=tensor([4.5000])

rank 3 has x=tensor([4.5000])

rank 9 has x=tensor([4.5000])

rank 1 has x=tensor([4.5000])

rank 7 has x=tensor([4.5000])

rank 4 has x=tensor([4.5000])

rank 2 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])

rank 5 has x=tensor([4.5000])

rank 6 has x=tensor([4.5000])
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Partial averaging using dynamic subgraphs

Example: Default one-peer exponential averaging

1 dynamic_neighbors = topology_util.GetDynamicSendRecvRanks(

2 bf.load_topology(), bf.rank())

3

4 for _ in range(maxite):

5 to_neighbors, from_neighbors = next(dynamic_neighbors)

6

7 avg_weight = 1/(len(from_neighbors) + 1)

8

9 xi = bf.neighbor_allreduce(xi, name=’x’,

10 self_weight=avg_weight,

11 neighbor_weights={r: avg_weight for r in from_neighbors},

12 send_neighbors=to_neighbors)

You can replace GetDynamicSendRecvRanks() with your own.

48 / 61



Decentralized gradient descent (Nedic and Ozdaglar, 2009)

To approximate solve

minimize
x

α

n∑
i=1

fi(xi) subject to x1 = · · · = xn,

we can apply decentralized gradient descent:

xk+1 = Wxk − α∇f(xk).

Implementation using static exp2:

# DGD recursion

for k in range(maxite):

xi = bf.neighbor_allreduce(xi) - alpha*ComputeGrad(fi,xi)
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Blocking and asynchrony

Each node has two threads: communication thread and computation thread

• non-blocking: allow concurrent threads to save time
• blocking: computation starts after communication completes

Synchronization is similar concept but applies to operations across different
nodes. All collective communications are synchronous.

Left: nonblocking but synchronized; Right: blocking, may or may not sync’d

By default, BlueFog is blocking and synchronized, but it also supports
non-blocking and asynchronous operations
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To save time, we ask neighbor allreduce Wxk not to block computation
∇f(xk), so they can run concurrently.

1 for k in range(maxite):

2 handle = bf.neighbor_allreduce_nonblocking(xi)

3 gradi = ComputeGrad(fi, xi)

4 avg_x = bf.wait(handle)

5 xi = avg_x - alpha*gradi

Since Line 5 must wait for the result of Wxk.
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EXTRA (Shi et al., 2015)

EXTRA was the first method that solves

minimize
x

n∑
i=1

fi(xi) subject to x1 = · · · = xn

with a constant α. One form of this method is{
x1 = Wx0 − α∇f(x0),

xk+1 = W (2xk − xk−1)− α(∇f(xk)−∇f(xk−1)), k = 1, 2, · · ·

The code structure is similar to DGD. Non-blocking communication can
accelerate the code.
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Gradient-Tracking

DIGing Nedic et al. (2017) is a tracking-based method. For static W , DIGing is
a special case of EXTRA. However, DIGing works for dynamic W .{

xk+1 = W (k)xk − αyk

yk+1 = W (k)yk +∇f(xk+1)−∇f(xk)

(yk)k a tracking sequence converging to limk
1
n

∑n

i=1∇fi(x
k) if it exists.

xi = np.zeros((d,1))

yi = fi_grad_prev = ComputeGrad(fi, xi)

for k in range(maxite):

self_weight, recv_weights = ComputeWeights(k, bf.rank())

xi = bf.neighbor_allreduce(xi, self_weight, recv_weights) \

- alpha*yi

gi = ComputeGrad(fi, xi)

yi = bf.neighbor_allreduce(gi, self_weight, recv_weights) \

+ gi - gi_prev

gi_prev = gi.copy()
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Summary

• Decentralized computing can accelerate large-scale deep training

• Exponential graphs are provably efficient for decentralized deep training

• Periodic global averaging can further accelerate decentralized deep training

• We develop a GitHub ropo to help implement decentralized training easily
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S. Pu, W. Shi, J. Xu, and A. Nedić, “Push–pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1–16, 2020.

R. Xin and U. A. Khan, “A linear algorithm for optimization over directed
graphs with geometric convergence,” IEEE Control Systems Letters, vol. 2,
no. 3, pp. 315–320, 2018.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A unified
theory of decentralized sgd with changing topology and local updates,” in
International Conference on Machine Learning (ICML), 2020, pp. 1–12.

A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM Journal on
Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

55 / 61



References II

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized training
over decentralized data,” in International Conference on Machine Learning,
2018, pp. 4848–4856.

T. Lin, S. P. Karimireddy, S. U. Stich, and M. Jaggi, “Quasi-global momentum:
Accelerating decentralized deep learning on heterogeneous data,” arXiv
preprint arXiv:2102.04761, 2021.

R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis for
decentralized online stochastic non-convex optimization,” arXiv preprint
arXiv:2008.04195, 2020.

S. Lu, X. Zhang, H. Sun, and M. Hong, “Gnsd: A gradient-tracking based
nonconvex stochastic algorithm for decentralized optimization,” in 2019
IEEE Data Science Workshop (DSW). IEEE, 2019, pp. 315–321.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” in International Conference on Machine
Learning, 2018, pp. 3043–3052.

56 / 61



References III

J. Zhang and K. You, “Asyspa: An exact asynchronous algorithm for convex
optimization over digraphs,” IEEE Transactions on Automatic Control,
vol. 65, no. 6, pp. 2494–2509, 2019.

T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized consensus
optimization with asynchrony and delays,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 4, no. 2, pp. 293–307, 2017.

A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization
and gossip algorithms with compressed communication,” in International
Conference on Machine Learning, 2019, pp. 3478–3487.

A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep learning
with arbitrary communication compression,” in International Conference on
Learning Representations, 2019.

H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication
compression for decentralized training,” arXiv preprint arXiv:1803.06443,
2018.

57 / 61



References IV

X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear convergent decentralized
optimization with compression,” in International Conference on Learning
Representations, 2020.

D. Kovalev, A. Koloskova, M. Jaggi, P. Richtarik, and S. Stich, “A linearly
convergent algorithm for decentralized optimization: Sending less bits for
free!” in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 4087–4095.

K. Yuan, S. A. Alghunaim, B. Ying, and A. H. Sayed, “On the influence of
bias-correction on distributed stochastic optimization,” IEEE Transactions on
Signal Processing, 2020.

K. Yuan, Y. Chen, X. Huang, Y. Zhang, P. Pan, Y. Xu, and W. Yin,
“Decentlam: Decentralized momentum sgd for large-batch deep training,”
arXiv preprint arXiv:2104.11981, 2021.

H. Gao and H. Huang, “Periodic stochastic gradient descent with momentum
for decentralized training,” arXiv preprint arXiv:2008.10435, 2020.

58 / 61



References V

N. Singh, D. Data, J. George, and S. Diggavi, “Squarm-sgd:
Communication-efficient momentum sgd for decentralized optimization,”
arXiv preprint arXiv:2005.07041, 2020.

H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7184–7193.

A. Balu, Z. Jiang, S. Y. Tan, C. Hedge, Y. M. Lee, and S. Sarkar,
“Decentralized deep learning using momentum-accelerated consensus,” arXiv
preprint arXiv:2010.11166, 2020.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “Slowmo: Improving
communication-efficient distributed sgd with slow momentum,” arXiv
preprint arXiv:1910.00643, 2019.

K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffusion for distributed
optimization and learning – Part I: Algorithm development,” IEEE
Transactions on Signal Processing, vol. 67, no. 3, pp. 708 – 723, 2019.

59 / 61



References VI
Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with

network independent step-sizes and separated convergence rates,” IEEE
Transactions on Signal Processing, July 2019, early acces. Also available on
arXiv:1704.07807.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in IEEE Conference on Decision and Control (CDC), Osaka,
Japan, 2015, pp. 2055–2060.

P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 2, no. 2, pp. 120–136, 2016.

G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2018.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp.
48–61, 2009.

60 / 61



References VII

W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm
for decentralized consensus optimization,” SIAM Journal on Optimization,
vol. 25, no. 2, pp. 944–966, 2015.

61 / 61


	References



