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Contents in the lecture

Introduction to deep neural network (DNN) and various training modes (Part I)

• Single-node training
• Parallel/distributed training
• Decentralized training

Making decentralized algorithms practical for large-scale deep training (Part II)

• Exponential graphs
• Primal-dual decentralized methods
• Multiple gossip loops/Periodic global averaging

Other advanced topics and BlueFog (Part III)

• Large-batch deep training/communication-saving decentralized approaches
• An open source decentralized deep training framework: BlueFog
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D-SGD Review

• A network of n nodes (GPUs) collaborate to solve the problem:

min
x∈Rd

f(x) = 1
n

n∑
i=1

[fi(x) = Eξi∼DiF (x; ξi)].

• Each component fi : Rd → R is local and private to node i

• Random variable ξi denotes the local data that follows distribution Di

• Each local distribution Di may be different; data heterogeneity

• We consider deep training within high-performance data-center clusters
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Decentralized SGD

• Decentralized SGD (D-SGD) has the following recursion:

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

wijx
(k+ 1

2 )
j (Partial averaging)

• Per-iteration communication: Ω(dmax)� Ω(n) when topology is sparse

• Incurs Ω(1) comm. overhead on sparse topology (ring or grid)
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Decentralized SGD is more communication efficient

Model Ring-Allreduce Partial average

ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

• ResNet-50 has 25.5M parameters; Bert has 300M parameters

• Partial average saves more communication for larger model
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Convergence rate: P-SGD v.s. D-SGD

• Convergence comparison (i.i.d data distribution, i.e., b2 = 0):

P-SGD : 1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

)
D-SGD : 1

T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3︸ ︷︷ ︸
extra overhead

)

where σ2 is the gradient noise, and T is the number of iterations.

• D-SGD requires more iteration (i.e., T has to be large enough) to reach
that stage due to the extra overhead caused by partial averaging
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Transient iterations

• Definition (Pu et al., 2020a): number of iterations before D-SGD achieves
linear speedup

• Longer tran. iters. =⇒ slower convergence than P-SGD

• The transient iteration complexity of D-SGD is

iid data : ρ2/3σ2/3

T 2/3(1− ρ)1/3 ≤
σ√
nT

=⇒ T = Ω( ρ4n3

(1− ρ)2 )

non-iid data : ρ2/3b2/3

T 2/3(1− ρ)2/3 ≤
σ√
nT

=⇒ T = Ω( ρ4n3

(1− ρ)4 )

• Sparse topology (ρ→ 1) incurs large tran. iters. complexity
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Transient iterations: illustration

Illustration of the tran. iters. on D-SGD over ring (logistic regression)
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If the transient stage is too long, we may not be able to achieve linear speedup
given the limited time/resource budget
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Slower convergence will compensate comm. efficiency

• ImageNet dataset; ResNet-50; 256 V100 GPUs

Method Epoch Acc.% Time(hrs.)

P-SGD 120 76.26 2.22
D-SGD 120 75.34 1.55

• D-SGD finishes the same epochs faster because it is more comm. efficient

• D-SGD achieves worse accuracy because it converges slower than P-SGD
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Slower convergence will compensate comm. efficiency

• ImageNet dataset; ResNet-50; 256 V100 GPUs

Method Epoch Acc.% Time(hrs.)

P-SGD 120 76.26 2.22
D-SGD 240 76.18 3.03

• When training with more epochs, D-SGD catch up with P-SGD in
accuracy; but it takes more wall-clock time than PSGD

• Slower convergence compensates its comm. efficiency
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Accelerate D-SGD and make it practical for deep learning

• Recall the transient iteration complexity of D-SGD

iid data : T = Ω( ρ4n3

(1− ρ)2 )

non-iid data : T = Ω( ρ4n3

(1− ρ)4 )

• Reducing tran. iter. complexity is the key to accelerating D-SGD
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Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)
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Trade-off between comm. efficiency and convergence rates

• Recall per-iter comm. Ω(dmax) and trans. iters. Ω(n3/(1− ρ)2) (iid data)

• Dense topology: expensive comm. but faster convergence

• Sparse topology: cheap comm. but slower convergence

• What topology shall we use to organize all GPUs?
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Common topologies
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Common topologies: comm. cost and tran. iters

• According to (Nedić et al., 2018), we have

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2 ) Ω(n3)

• These topologies either have expensive comm. cost or longer tran. iters.

• What topology can enable both cheap comm. and fast convergence?
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Static exponential graph

• Static exponential graph (Lian et al., 2017, 2018; Assran et al., 2019) is
widely-used in deep training

• Empirically successful but less theoretically understood

• Each node links to neighbors that are 20, 21, · · · , 2blog2(n−1)c hops away

• In the figure, node 1 connects to 2, 3 and 5.
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Weight matrix associated with static exponential graph

• The weight matrix W associated with static exp. graph is defined as

wexp
ij =

{
1

dlog2(n)e+1 if log2(mod(j − i, n)) is an integer or i = j

0 otherwise.

• An illustrating example

Figure: A 6-node static exponential graph and its associated weight matrix.
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Weight matrix over static exponential graph: spectral gap

• Each node has dlog2(n)e neighbors; per-iter comm. cost is Ω(log2(n))

• The following theorem1 clarifies that ρ(W exp) = O(1− 1/ log2(n)); highly
non-trivial proofs; requires smart utilization of Fourier transform.

Theorem (Ying et.al., 2021)
Let τ = dlog2(n)e, and ρ = ‖W − 1

n
11T ‖2 be the spectral gap. It holds that

ρ(W exp)


= 1− 2

τ + 1 , when n is even

< 1− 2
τ + 1 , when n is odd

1B. Ying∗, K. Yuan∗, Y. Chen∗, H. Han, P. Pan, and W. Yin, “Exponential graph is provably efficient for deep
training”, submitted, 2021
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Spectral gap: numerical illustration
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Figure: Illustration of the spectral gaps for ring, grid and static exp. graphs.
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Static exponential graph v.s. other topologies

• Recall D-SGD has tran. iters. Ω(n3/(1− ρ)2)

• With 1− ρ = O(1/ log2(n)), static exp has tran. iters. Ω(n3 log2
2(n))

• Per-iter comm. and tran. iter. of static exp are nearly best (up to log2(n))

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2 ) Ω(n3)

Static Exp Ω̃(1) Ω̃(n3)
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One-peer exponential graph

• Static exponential graph has Ω(log2(n)) per-iteration comm.

• Such overhead is still more expensive than ring or grid

• Split exponential graph into a sequence of one-peer realizations (Assran
et al., 2019)

• Each realization has Ω(1) per-iteration communication
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One-peer exponential graph: weight matrix

• We let τ = dlog2(n)e. The weight matrix W (k) is time-varying

w
(k)
ij =


1
2 if log2(mod(j − i, n)) = mod(k, τ)
1
2 if i = j

0 otherwise.

• An illustrating example
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Decentralized SGD over one-peer exponential graph

• The D-SGD recursion over one-peer exponential graph:

Sample W (k) over one-peer exponential graph

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

w
(k)
ij x

(k+ 1
2 )

j (Partial averaging)

• One-loop algorithm; each node has one neighbor; per-iter comm. is Ω(1)

• Since each realization is sparser than static exp., will it enable DSGD with
longer transient iterations?
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One-peer exp. graphs can achieve periodic exact average

Theorem (Periodic Global-averaging)

Suppose τ = log2(n) is a positive integer. It holds that

W (k+`)W (k+`−1) · · ·W (k+1)W (k) = 1
n
11

T

for any integer k ≥ 0 and ` ≥ τ − 1.

While each realization of one-peer graph is sparser, a sequence of one-peer
graphs will enable effective global averaging.
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One-peer exp. graphs can achieve periodic exact average
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Figure: O.E. graph has periodic global averaging when τ = log2(n) is an integer.
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Applying one-peer exp. graphs to DSGD

Assumption
(1) Each fi(x) is L-smooth; (2) Each gradient noise is unbiased and has
bounded variance σ2; (3) Each local distribution Di is identical (iid)

Theorem (DSGD convergence with one-peer exp.)

Under the above assumptions and with γ = O(1/
√
T ), let τ = log2(n) be an

integer, DSGD with one-peer exponential graph will converge at

1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

+ σ2/3 log2/3
2 (n)

T 2/3︸ ︷︷ ︸
extra overhead

)

Convergence rate for decentralized momentum SGD (DmSGD) with non-iid
data distributions is also established in (Ying et al., 2021).
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Static exp. v.s. one-peer exp.

• Convergence rate for DSGD over static and one-peer exp. graphs

Static exp. O
(

σ√
nT

+ σ2/3

T 2/3(1− ρ)1/3

)
(where 1− ρ = O(1/ log2(n)))

One-peer exp. O
(

σ√
nT

+ σ2/3 log2/3
2 (n)

T 2/3

)
• DSGD with one-peer exp. converges as fast as static exp. in terms of the

established bounds; a surprising result.

• DSGD with both graphs are with the same tran. iters. O(n3 log2
2(n))

• The same results hold for heterogeneous data scenario, and for DmSGD.
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One-peer graph is the state-of-the-art topology

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2 ) Ω(n3)

Static Exp. Ω̃(1) Ω̃(n3)
One-peer Exp. Ω(1) Ω̃(n3)

• Since one-peer exp. incurs less per-iter comm., it is recommended for DL.
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Exponential graphs have shorter transient iterations

Illustration of the tran. iters. on DmSGD for logistic regression.
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DmSGD over both exp. graphs converge roughly the same; they are faster than
other topologies with 32 nodes.
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Experimental results: two metrics

• Wall-clock time to finish 90 epochs of training; measures per-iter comm.

• Validation accuracy after 90 epochs of training; measures convgt. rate
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Image Classification

• ImageNet-1K dataset
• 1.3M training images
• 50K test images
• 1K classes
• DNN Model: ResNet-50

(∼25.5M parameters)
• GPU: Tesla V100 clusters
• Framework: Pytorch DDP
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D-SGD achieves better linear speedup

Table: Comparison of top-1 validation accuracy(%) and training time (hours).

nodes 4(4x8 GPUs) 8(8x8 GPUs) 16(16x8 GPUs) 32(32x8 GPUs)
topology acc. time acc. time acc. time acc. time

P-SGD 76.32 11.6 76.47 6.3 76.46 3.7 76.25 2.2
Ring 76.16 11.6 76.14 6.5 76.16 3.3 75.62 1.8

one-peer exp. 76.34 11.1 76.52 5.7 76.47 2.8 76.27 1.5
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Convergence curves: one-peer exp. v.s. static exp.

Image classification: ResNet-50 for ImageNet; 8× 8 = 64 GPUs.

0 10000 20000 30000 40000 50000
Iterations

1

2

3

4

5

6

7

Tr
ai

n 
Lo

ss

Resnet50 (8x8x32) Training Loss on ImageNet Dataset

54000 55000 56000
0.8

0.9

1.0

static
dynamic

0 20 40 60 80
Epoch

10

20

30

40

50

60

70

Ev
al

 T
op

-1
 A

cc
ur

ac
y

Resnet50 (8x8x32) Val Acc on ImageNet Dataset

60 80

75

76

static
dynamic

Figure: DmSGD over one-peer exp. converges as fast as over static exp.
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Comparing different models/methods: one-peer v.s. static

• setting: ImageNet; 8× 8 = 64 GPUs; diff = o.e - s.e.
• both topo. achieve similar accuracy across different models and algorithms
• accuracy difference is minor (except for MobileNet with DmSGD)
• QG-DmSGD (Lin et al., 2021) and DmSGD can outperform PSGD in

ResNet-50 in accuracy
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Object Detection

• Dataset: PASCAL/COCO
• GPU: Tesla V100 clusters
• Framework: Pytorch DDP;

BlueFog
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Comparing different tasks: one-peer exp. v.s. static exp.

• setting: object detection; 8× 8 = 64 GPUs;
• both topo. achieve similar accuracy across different algorithms in detection
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Summary

• Both per-iter comm. and tran. iter. of exp. graphs are nearly best (up to
log2(n) factors) among known topologies

• While one-peer exp. is sparser, it can converge as fast as staic exp.

• One-peer exponential graph is recommend for decentralized DL
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Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)
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D-SGD transient iteration complexity review

• Recall the convergence rate of D-SGD for non-convex and non-iid scenario:

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3 + ρ2/3b2/3

T 2/3(1− ρ)2/3

)
where b2 > 0 deteriorates the dependence on network topology 1− ρ

• The transient iteration complexity of D-SGD is summarized as

scenario iid data non-iid data

strongly-convex Ω( n
1−ρ ) Ω( n

(1−ρ)2 )
generally-convex Ω( n3

(1−ρ)2 ) Ω( n3

(1−ρ)4 )
non-convex Ω( n3

(1−ρ)2 ) Ω( n3

(1−ρ)4 )
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D-SGD transient iteration complexity review

• Can we improve the dependence on topology for non-iid scenario?

• Main idea: remove the influence of b2 from the convergence rate
(Koloskova et al., 2020; Huang and Pu, 2021; Yuan et al., 2020; Yuan and
Alghunaim, 2021)2

• Suppose a decentralized method for non-iid scenario can converge as

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3

)
it will improve the transient iteration complexity as follows

Ω( ρ4n3

(1− ρ)4 ) =⇒ Ω( ρ4n3

(1− ρ)2 )

2K. Yuan and S. A. Alghunaim, “Removing data heterogeneity influence enhances network topology
dependence of decentralized SGD”, arXiv:2105.08023
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How does D-SGD suffer from data heterogeneity?

• For simplicity, we consider the deterministic convex decentralized GD:

x
(k+1)
i =

∑
j∈Ni

wij
(
x

(k)
j − γ∇fj(x

(k)
j )
)
, ∀i ∈ [n]

• Suppose x(k)
i = x? at iteration k for any i ∈ [n], it holds that

x
(k+1)
i =

∑
j∈Ni

wij
(
x? − γ∇fj(x?)

)
= x? − γ

∑
j∈Ni

wij∇fj(x?) 6= x?

where the last inequality holds because fi(x) 6= f(x) (data-heterogeneous)

• D-GD cannot stay at x?; data heterogeneity incurs oscillation.
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How does D-SGD suffer from data heterogeneity?
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Remove the influence of data-heterogeneity

• EXTRA (Shi et al., 2015) is the first decentralized method to remove the
influence of data heterogeneity

• Exact-Diffusion (Yuan et al., 2019) (also known as NIDS (Li et al., 2019)
or D2 (Tang et al., 2018)) improves EXTRA on learning rate stability range

• Gradient-tracking based methods (Xu et al., 2015; Di Lorenzo and Scutari,
2016; Nedic et al., 2017; Qu and Li, 2018; Pu et al., 2020b; Xin and
Khan, 2018) remove data heterogeneity, and can be used in more relaxed
settings (e.g., asymmetric/directed/time-varying weight matrix)

• All these algorithms can be unified into one decentralized framework
(Alghunaim et al., 2020; Xu et al., 2021; Xin et al., 2020a)
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Exact-Diffusion

• For Exact-Diffusion, each node run the following recursion in parallel

ψ
(k+1)
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (local SGD)

φ
(k+1)
i = ψ

(k+1)
i + x

(k)
i − ψ

(k)
i (bias correction)

x
(k+1)
i =

∑
j∈Ni

wij φ
(k+1)
j (partial averaging)

• When correction term x
(k)
i − ψ

(k)
i is removed from the correction step,

Exact-Diffusion reduces to standard D-SGD

• The weight matrix W needs to be symmetric, and satisfies λn(W ) > − 1
3
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How is Exact-Diffusion immune to data heterogeneity?

• Combining all recursions, we achieve the deterministic version

x
(k+1)
i =

∑
j∈Ni

wij

(
2x(k)

i − x
(k−1)
i + γ(∇f(x(k)

i )−∇f(x(k−1)
i ))

)

• Assume x(k−1)
i = x

(k)
i = x? for any i ∈ [n], at iteration k + 1 we have

x
(k+1)
i =

∑
j∈Ni

wij(2x? − x?) = x?

• When initialized from the minimum, Exact-Diffusion can stay there in
spite of the data heterogeneity ∇fi(x) 6= ∇fj(x)
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Exact-Diffusion convergence

Assumption
(A1) Each local loss function F (x; ξi) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance σ2

(A3) Each local stochastic gradient g(k)
i is independent of each other

(A4) W is positive semi-definite

Theorem (Yuan and Alghunaim (2021))
Under the above assumptions and with appropriate γ, Exact-Diffusion will
converge at (S.C. is for strongly-convex and G.C. is for generally-convex)

1
T + 1

T∑
k=0

(
Ef(x̄(k))− f(x?)

)
= O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3

)
(G.C.)

1
HT

T∑
k=0

hk
(
Ef(x̄(k))− f(x?)

)
= Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2

)
(S.C.)

where hk is some positive weight and HT =
∑T

k=0 hk.
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Convergence comparison: Exact-Diffusion v.s. D-SGD

In the strongly-convex setting,

• The convergence rate comparison:

D-SGD : Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2 + ρ2b2

(1− ρ)2T 2

)
Exact-Diffusion : Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2

)

• The transient iteration complexity comparison (Huang and Pu, 2021; Yuan
and Alghunaim, 2021):

D-SGD : Ω
(

ρ2n

(1− ρ)2

)
Exact-Diffusion : Ω

(
ρ2n

1− ρ

)

47 / 71



Convergence comparison: Exact-Diffusion v.s. D-SGD

In the generally-convex setting,

• The convergence rate comparison:

D-SGD : O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3 + ρ2/3b2/3

(1− ρ)2/3T 2/3

)
Exact-Diffusion : O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3

)

• The transient iteration comparison (Yuan and Alghunaim, 2021):

D-SGD : Ω
(

ρ4n3

(1− ρ)4

)
Exact-Diffusion : Ω

(
ρ4n3

(1− ρ)2

)
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Convergence comparison: Exact-Diffusion v.s. D-SGD

In the non-convex setting,

• Exact-Diffusion can remove data heterogeneity (Tang et al., 2018), but no
improved result on network topology dependence was shown

• Gradient-tracking can remove data heterogeneity (Xin et al., 2020b;
Zhang and You, 2019; Lu et al., 2019), but no improved result on network
topology dependence was shown

• It is still an open question whether data-heterogeneity-corrected methods
(such as EXTRA, Exact-Diffusion, and Gradient tracking) can have an
improved network topology dependence than P-SGD
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Experiments: Exact-Diffusion v.s. D-SGD

Convex setting: logistic regression problem; non-iid scenario
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Convergence comparison: Exact-Diffusion v.s. D-SGD

Strongly-convex setting: least-square problem; non-iid scenario
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Convergence comparison: Exact-Diffusion v.s. D-SGD

Deep learning experiments are on-going. No results yet.
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Summary

• The data heterogeneity b2 in D-SGD deteriorates the topology dependence

• EXTRA/Exact-Diffusion/Gradient-tracking can remove the influence of b2

• Exact-Diffusion improves the topology dependence when b2 exists.

non-iid scenario Exact-Diffusion D-SGD

strongly-convex Ω( ρ
2n

1−ρ ) Ω( ρ2n
(1−ρ)2 )

generally-convex Ω( ρ4n3

(1−ρ)2 ) Ω( ρ4n3

(1−ρ)4 )

non-convex N.A. Ω( ρ4n3

(1−ρ)4 )
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Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)
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Motivation

• Recall non-convex D-SGD suffers from additional transient iterations

homogeneous (iid) data: Ω
(

ρ4n3

(1− ρ)2

)
heterogeneous (non-iid) data: Ω

(
ρ4n3

(1− ρ)4

)
• ρ→ 1 will significantly enlarge the transient iteration stage

• Unfortunately, most topologies have ρ→ 1 as n grows

• Ring: 1− ρ = O(1/n2);
• Grid: 1− ρ = O(1/n);
• Exp.: 1− ρ = O(1/ log2(n))

• We have to alleviate the influence of 1/(1− ρ) in trans. iters. complexity
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Per-iteration communication cost

Model Ring-Allreduce Partial average

ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

• While global average takes longer comm. time, it is not too bed

• We can mix partial average with global average (Chen et al., 2021)3.

• In a period of H iterations: run H − 1 partial average and 1 global average

3Y. Chen∗, K. Yuan∗, Y. Zhang, P. Pan, Y. Xu, W. Yin, “Accelerating Gossip SGD with Periodic Global
Averaging”, ICML 2021
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DSGD-PGA: DSGD with Periodic Global Averaging

• DSGD-PGA: accelerate D-SGD with periodic global averaging

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k+1)
i )

x
(k+1)
i =

{
1
n

∑n

j=1 x
(k+ 1

2 )
j If mod(k + 1, H) = 0∑

j∈Ni
wijx

(k+ 1
2 )

j If mod(k + 1, H) 6= 0

where H is the global averaging period.

• DSGD-PGA is expected to converge faster than D-SGD.

• DSGD-PGA reduces to D-SGD when H →∞

• Similar idea also appeared in topology-changing D-SGD (Koloskova et al.,
2020) and SlowMo (Wang et al., 2019)
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DSGD-PGA: Transient iteration complexity

• PGA significantly improves the transient stage of D-SGD in the
non-convex setting (Chen et al., 2021):

scenario DSGD-PGA D-SGD

iid data Ω(ρ4n3H2) Ω( ρ4n3

(1−ρ)2 )

non-iid data Ω(ρ4n3H4) Ω( ρ4n3

(1−ρ)4 )

• PGA bounds 1/(1− ρ) with H; benefits most for sparse topology
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Numerical experiments: D-SGD v.s. DSGD-PGA

Problem: logistic regression problem with non-iid data

Cyclic Topology

Figure: Transient stage comparison.
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DSGD-AGA: D-SGD with Adaptive Global Averaging

• Gossip-AGA avoids the burden of turning parameters

• An effective period strategy: more frequent GA in initial stages

• Intuition: lower consensus variance can speedup convergence

1
n(T + 1)

T∑
k=0

n∑
i=1

E‖x(k)
i − x̄(k)‖2 ≤ d1γ

2

T + 1

T∑
k=0

E‖∇f(x̄(k))‖2 + d2γ
2

Consensus variance gets decreased as γ → 0 and E‖∇f(x̄(k))‖2 → 0

• Adaptive rule: H(`) =
(

Ef(x̄(0))
Ef(x̄

(T`−1))

) 1
4
H(0);
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Experiments on Large-scale Deep Training

Language Modeling:

• Model: BERT-Large (∼330M parameters)
• Dataset: Wikipedia (2500M words) and BookCorpus (800M words)
• Hardware: 64 GPUs
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Image Classification

Method Final Loss Wall-clock Time (hrs)

P-SGD 1.75 59.02
D-SGD 2.17 29.7

D-SGD ×2 1.81 59.7
DSGD-PGA 1.82 35.4
DSGD-AGA 1.77 30.4

Table: Comparison of training loss and training time of BERT training.

• DSGD-AGA acheives similar final loss with 2× speedup
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Summary

• Periodic global averaging can improve the transient iteration stage:

Ω( ρ4n3

(1− ρ)4 ) =⇒ Ω(ρ4n3H4)

• PGA benefits most for sparse topology, i.e., ρ→ 1

• Global averaging period H can be adjusted adaptively
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Discussion

• We consider deep training within high-performance data-center clusters

• Global averaging conducted by All-reduce has tolerable comm. cost

• For mobile AI or federated learning, global averaging is very expensive

• We can approximate global averaging via multiple partial averaging steps,
see [Lu and De Sa, 2021, ICML Outstanding Paper Honorable mention]

• However, multiple partial averaging steps are not recommended for
data-center clusters; 3 partial averaging steps may take more wall-clock
time than one single global averaging
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In Part III, we will

Discuss large-batch decentralized deep training, and

Introduce BlueFog, an open-source library to help deploy decentralized methods
into real CPU/GPU clusters
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