
Decentralized Optimization Algorithms for Large-Scale
Deep Neural Network Training

Kun Yuan

DAMO Academy, Alibaba Group

Joint work with Yiming Chen, Pan Pan, Yinghui Xu, Wotao Yin (Alibaba),
Bicheng Ying (UCLA), Hanbin Hu (UCSB), Xinmeng Huang (Upenn),

and Sulaiman A. Alghunaim (Kuwait University)

Aug 5, 2021, Zhejiang University

1 / 71

Contents in the lecture

Introduction to deep neural network (DNN) and various training modes (Part I)

• Single-node training
• Parallel/distributed training
• Decentralized training

Making decentralized algorithms practical for large-scale deep training (Part II)

• Exponential graphs
• Primal-dual decentralized methods
• Multiple gossip loops/Periodic global averaging

Other advanced topics and BlueFog (Part III)

• Large-batch deep training/communication-saving decentralized approaches
• An open source decentralized deep training framework: BlueFog

2 / 71

D-SGD Review

• A network of n nodes (GPUs) collaborate to solve the problem:

min
x∈Rd

f(x) = 1
n

n∑
i=1

[fi(x) = Eξi∼DiF (x; ξi)].

• Each component fi : Rd → R is local and private to node i

• Random variable ξi denotes the local data that follows distribution Di

• Each local distribution Di may be different; data heterogeneity

• We consider deep training within high-performance data-center clusters

3 / 71

Decentralized SGD

• Decentralized SGD (D-SGD) has the following recursion:

x
(k+ 1

2)
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i) (Local update)

x
(k+1)
i =

∑
j∈Ni

wijx
(k+ 1

2)
j (Partial averaging)

• Per-iteration communication: Ω(dmax)� Ω(n) when topology is sparse

• Incurs Ω(1) comm. overhead on sparse topology (ring or grid)

4 / 71

Decentralized SGD is more communication efficient

Model Ring-Allreduce Partial average

ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

• ResNet-50 has 25.5M parameters; Bert has 300M parameters

• Partial average saves more communication for larger model

5 / 71

Convergence rate: P-SGD v.s. D-SGD

• Convergence comparison (i.i.d data distribution, i.e., b2 = 0):

P-SGD : 1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

)
D-SGD : 1

T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3︸ ︷︷ ︸
extra overhead

)

where σ2 is the gradient noise, and T is the number of iterations.

• D-SGD requires more iteration (i.e., T has to be large enough) to reach
that stage due to the extra overhead caused by partial averaging

6 / 71

Transient iterations

• Definition (Pu et al., 2020a): number of iterations before D-SGD achieves
linear speedup

• Longer tran. iters. =⇒ slower convergence than P-SGD

• The transient iteration complexity of D-SGD is

iid data : ρ2/3σ2/3

T 2/3(1− ρ)1/3 ≤
σ√
nT

=⇒ T = Ω(ρ4n3

(1− ρ)2)

non-iid data : ρ2/3b2/3

T 2/3(1− ρ)2/3 ≤
σ√
nT

=⇒ T = Ω(ρ4n3

(1− ρ)4)

• Sparse topology (ρ→ 1) incurs large tran. iters. complexity

7 / 71

Transient iterations: illustration

Illustration of the tran. iters. on D-SGD over ring (logistic regression)

0 2000 4000 6000 8000
Iterations

10 3

10 2

10 1

100

101

M
ea

n-
Sq

ur
e

Er
ro

r

Transient Iterations

Decentralized SGD
Parallel SGD

If the transient stage is too long, we may not be able to achieve linear speedup
given the limited time/resource budget

8 / 71

Slower convergence will compensate comm. efficiency

• ImageNet dataset; ResNet-50; 256 V100 GPUs

Method Epoch Acc.% Time(hrs.)

P-SGD 120 76.26 2.22
D-SGD 120 75.34 1.55

• D-SGD finishes the same epochs faster because it is more comm. efficient

• D-SGD achieves worse accuracy because it converges slower than P-SGD

9 / 71

Slower convergence will compensate comm. efficiency

• ImageNet dataset; ResNet-50; 256 V100 GPUs

Method Epoch Acc.% Time(hrs.)

P-SGD 120 76.26 2.22
D-SGD 240 76.18 3.03

• When training with more epochs, D-SGD catch up with P-SGD in
accuracy; but it takes more wall-clock time than PSGD

• Slower convergence compensates its comm. efficiency

10 / 71

Accelerate D-SGD and make it practical for deep learning

• Recall the transient iteration complexity of D-SGD

iid data : T = Ω(ρ4n3

(1− ρ)2)

non-iid data : T = Ω(ρ4n3

(1− ρ)4)

• Reducing tran. iter. complexity is the key to accelerating D-SGD

11 / 71

Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)

12 / 71

Trade-off between comm. efficiency and convergence rates

• Recall per-iter comm. Ω(dmax) and trans. iters. Ω(n3/(1− ρ)2) (iid data)

• Dense topology: expensive comm. but faster convergence

• Sparse topology: cheap comm. but slower convergence

• What topology shall we use to organize all GPUs?

13 / 71

Common topologies

14 / 71

Common topologies: comm. cost and tran. iters

• According to (Nedić et al., 2018), we have

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2) Ω(n3)

• These topologies either have expensive comm. cost or longer tran. iters.

• What topology can enable both cheap comm. and fast convergence?

15 / 71

Static exponential graph

• Static exponential graph (Lian et al., 2017, 2018; Assran et al., 2019) is
widely-used in deep training

• Empirically successful but less theoretically understood

• Each node links to neighbors that are 20, 21, · · · , 2blog2(n−1)c hops away

• In the figure, node 1 connects to 2, 3 and 5.

16 / 71

Weight matrix associated with static exponential graph

• The weight matrix W associated with static exp. graph is defined as

wexp
ij =

{
1

dlog2(n)e+1 if log2(mod(j − i, n)) is an integer or i = j

0 otherwise.

• An illustrating example

Figure: A 6-node static exponential graph and its associated weight matrix.

17 / 71

Weight matrix over static exponential graph: spectral gap

• Each node has dlog2(n)e neighbors; per-iter comm. cost is Ω(log2(n))

• The following theorem1 clarifies that ρ(W exp) = O(1− 1/ log2(n)); highly
non-trivial proofs; requires smart utilization of Fourier transform.

Theorem (Ying et.al., 2021)
Let τ = dlog2(n)e, and ρ = ‖W − 1

n
11T ‖2 be the spectral gap. It holds that

ρ(W exp)

= 1− 2

τ + 1 , when n is even

< 1− 2
τ + 1 , when n is odd

1B. Ying∗, K. Yuan∗, Y. Chen∗, H. Han, P. Pan, and W. Yin, “Exponential graph is provably efficient for deep
training”, submitted, 2021

18 / 71

Spectral gap: numerical illustration

0 50 100 150 200 250 300
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

2/4
3/5
4/6

5/7 6/8 7/9 8/10

The second largest magnitude of eigenvalue

Static Exp.
Ring
Grid
Theoratical Bound

Figure: Illustration of the spectral gaps for ring, grid and static exp. graphs.

19 / 71

Static exponential graph v.s. other topologies

• Recall D-SGD has tran. iters. Ω(n3/(1− ρ)2)

• With 1− ρ = O(1/ log2(n)), static exp has tran. iters. Ω(n3 log2
2(n))

• Per-iter comm. and tran. iter. of static exp are nearly best (up to log2(n))

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2) Ω(n3)

Static Exp Ω̃(1) Ω̃(n3)

20 / 71

One-peer exponential graph

• Static exponential graph has Ω(log2(n)) per-iteration comm.

• Such overhead is still more expensive than ring or grid

• Split exponential graph into a sequence of one-peer realizations (Assran
et al., 2019)

• Each realization has Ω(1) per-iteration communication

21 / 71

One-peer exponential graph: weight matrix

• We let τ = dlog2(n)e. The weight matrix W (k) is time-varying

w
(k)
ij =

1
2 if log2(mod(j − i, n)) = mod(k, τ)
1
2 if i = j

0 otherwise.

• An illustrating example

22 / 71

Decentralized SGD over one-peer exponential graph

• The D-SGD recursion over one-peer exponential graph:

Sample W (k) over one-peer exponential graph

x
(k+ 1

2)
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i) (Local update)

x
(k+1)
i =

∑
j∈Ni

w
(k)
ij x

(k+ 1
2)

j (Partial averaging)

• One-loop algorithm; each node has one neighbor; per-iter comm. is Ω(1)

• Since each realization is sparser than static exp., will it enable DSGD with
longer transient iterations?

23 / 71

One-peer exp. graphs can achieve periodic exact average

Theorem (Periodic Global-averaging)

Suppose τ = log2(n) is a positive integer. It holds that

W (k+`)W (k+`−1) · · ·W (k+1)W (k) = 1
n
11

T

for any integer k ≥ 0 and ` ≥ τ − 1.

While each realization of one-peer graph is sparser, a sequence of one-peer
graphs will enable effective global averaging.

24 / 71

One-peer exp. graphs can achieve periodic exact average

0 5 10 15 20 25
Iterations

10 13

10 11

10 9

10 7

10 5

10 3

10 1

Consensus Residue

O.E. n=8
O.E. n=32
O.E. n=128
O.E. n=512

S.E. n=8
S.E. n=32
S.E. n=128
S.E. n=512

R.M. n=8
R.M. n=32
R.M. n=128
R.M. n=512

Figure: O.E. graph has periodic global averaging when τ = log2(n) is an integer.

25 / 71

Applying one-peer exp. graphs to DSGD

Assumption
(1) Each fi(x) is L-smooth; (2) Each gradient noise is unbiased and has
bounded variance σ2; (3) Each local distribution Di is identical (iid)

Theorem (DSGD convergence with one-peer exp.)

Under the above assumptions and with γ = O(1/
√
T), let τ = log2(n) be an

integer, DSGD with one-peer exponential graph will converge at

1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

+ σ2/3 log2/3
2 (n)

T 2/3︸ ︷︷ ︸
extra overhead

)

Convergence rate for decentralized momentum SGD (DmSGD) with non-iid
data distributions is also established in (Ying et al., 2021).

26 / 71

Static exp. v.s. one-peer exp.

• Convergence rate for DSGD over static and one-peer exp. graphs

Static exp. O
(

σ√
nT

+ σ2/3

T 2/3(1− ρ)1/3

)
(where 1− ρ = O(1/ log2(n)))

One-peer exp. O
(

σ√
nT

+ σ2/3 log2/3
2 (n)

T 2/3

)
• DSGD with one-peer exp. converges as fast as static exp. in terms of the

established bounds; a surprising result.

• DSGD with both graphs are with the same tran. iters. O(n3 log2
2(n))

• The same results hold for heterogeneous data scenario, and for DmSGD.

27 / 71

One-peer graph is the state-of-the-art topology

Topology Per-iter. Comm. Trans. Iters. (iid scenario)

Ring Ω(2) Ω(n7)
Star Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -RandGraph Ω(n2) Ω(n3)

Static Exp. Ω̃(1) Ω̃(n3)
One-peer Exp. Ω(1) Ω̃(n3)

• Since one-peer exp. incurs less per-iter comm., it is recommended for DL.

28 / 71

Exponential graphs have shorter transient iterations

Illustration of the tran. iters. on DmSGD for logistic regression.

0 2000 4000 6000 8000 10000 12000 14000
Iterations

10 4

10 3

10 2

10 1

M
ea

n-
Sq

ur
e

Er
ro

r

PmSGD
DmSGD-Sta-Exp
DmSGD-OP-Exp
DmSGD-Grid
DmSGD-Ring

DmSGD over both exp. graphs converge roughly the same; they are faster than
other topologies with 32 nodes.

29 / 71

Experimental results: two metrics

• Wall-clock time to finish 90 epochs of training; measures per-iter comm.

• Validation accuracy after 90 epochs of training; measures convgt. rate

30 / 71

Image Classification

• ImageNet-1K dataset
• 1.3M training images
• 50K test images
• 1K classes
• DNN Model: ResNet-50

(∼25.5M parameters)
• GPU: Tesla V100 clusters
• Framework: Pytorch DDP

31 / 71

D-SGD achieves better linear speedup

Table: Comparison of top-1 validation accuracy(%) and training time (hours).

nodes 4(4x8 GPUs) 8(8x8 GPUs) 16(16x8 GPUs) 32(32x8 GPUs)
topology acc. time acc. time acc. time acc. time

P-SGD 76.32 11.6 76.47 6.3 76.46 3.7 76.25 2.2
Ring 76.16 11.6 76.14 6.5 76.16 3.3 75.62 1.8

one-peer exp. 76.34 11.1 76.52 5.7 76.47 2.8 76.27 1.5

32 / 71

Convergence curves: one-peer exp. v.s. static exp.

Image classification: ResNet-50 for ImageNet; 8× 8 = 64 GPUs.

0 10000 20000 30000 40000 50000
Iterations

1

2

3

4

5

6

7

Tr
ai

n
Lo

ss

Resnet50 (8x8x32) Training Loss on ImageNet Dataset

54000 55000 56000
0.8

0.9

1.0

static
dynamic

0 20 40 60 80
Epoch

10

20

30

40

50

60

70

Ev
al

 T
op

-1
 A

cc
ur

ac
y

Resnet50 (8x8x32) Val Acc on ImageNet Dataset

60 80

75

76

static
dynamic

Figure: DmSGD over one-peer exp. converges as fast as over static exp.

33 / 71

Comparing different models/methods: one-peer v.s. static

• setting: ImageNet; 8× 8 = 64 GPUs; diff = o.e - s.e.
• both topo. achieve similar accuracy across different models and algorithms
• accuracy difference is minor (except for MobileNet with DmSGD)
• QG-DmSGD (Lin et al., 2021) and DmSGD can outperform PSGD in

ResNet-50 in accuracy

34 / 71

Object Detection

• Dataset: PASCAL/COCO
• GPU: Tesla V100 clusters
• Framework: Pytorch DDP;

BlueFog

35 / 71

Comparing different tasks: one-peer exp. v.s. static exp.

• setting: object detection; 8× 8 = 64 GPUs;
• both topo. achieve similar accuracy across different algorithms in detection

36 / 71

Summary

• Both per-iter comm. and tran. iter. of exp. graphs are nearly best (up to
log2(n) factors) among known topologies

• While one-peer exp. is sparser, it can converge as fast as staic exp.

• One-peer exponential graph is recommend for decentralized DL

37 / 71

Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)

38 / 71

D-SGD transient iteration complexity review

• Recall the convergence rate of D-SGD for non-convex and non-iid scenario:

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3 + ρ2/3b2/3

T 2/3(1− ρ)2/3

)
where b2 > 0 deteriorates the dependence on network topology 1− ρ

• The transient iteration complexity of D-SGD is summarized as

scenario iid data non-iid data

strongly-convex Ω(n
1−ρ) Ω(n

(1−ρ)2)
generally-convex Ω(n3

(1−ρ)2) Ω(n3

(1−ρ)4)
non-convex Ω(n3

(1−ρ)2) Ω(n3

(1−ρ)4)

39 / 71

D-SGD transient iteration complexity review

• Can we improve the dependence on topology for non-iid scenario?

• Main idea: remove the influence of b2 from the convergence rate
(Koloskova et al., 2020; Huang and Pu, 2021; Yuan et al., 2020; Yuan and
Alghunaim, 2021)2

• Suppose a decentralized method for non-iid scenario can converge as

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3

)
it will improve the transient iteration complexity as follows

Ω(ρ4n3

(1− ρ)4) =⇒ Ω(ρ4n3

(1− ρ)2)

2K. Yuan and S. A. Alghunaim, “Removing data heterogeneity influence enhances network topology
dependence of decentralized SGD”, arXiv:2105.08023

40 / 71

How does D-SGD suffer from data heterogeneity?

• For simplicity, we consider the deterministic convex decentralized GD:

x
(k+1)
i =

∑
j∈Ni

wij
(
x

(k)
j − γ∇fj(x

(k)
j)
)
, ∀i ∈ [n]

• Suppose x(k)
i = x? at iteration k for any i ∈ [n], it holds that

x
(k+1)
i =

∑
j∈Ni

wij
(
x? − γ∇fj(x?)

)
= x? − γ

∑
j∈Ni

wij∇fj(x?) 6= x?

where the last inequality holds because fi(x) 6= f(x) (data-heterogeneous)

• D-GD cannot stay at x?; data heterogeneity incurs oscillation.

41 / 71

How does D-SGD suffer from data heterogeneity?

42 / 71

Remove the influence of data-heterogeneity

• EXTRA (Shi et al., 2015) is the first decentralized method to remove the
influence of data heterogeneity

• Exact-Diffusion (Yuan et al., 2019) (also known as NIDS (Li et al., 2019)
or D2 (Tang et al., 2018)) improves EXTRA on learning rate stability range

• Gradient-tracking based methods (Xu et al., 2015; Di Lorenzo and Scutari,
2016; Nedic et al., 2017; Qu and Li, 2018; Pu et al., 2020b; Xin and
Khan, 2018) remove data heterogeneity, and can be used in more relaxed
settings (e.g., asymmetric/directed/time-varying weight matrix)

• All these algorithms can be unified into one decentralized framework
(Alghunaim et al., 2020; Xu et al., 2021; Xin et al., 2020a)

43 / 71

Exact-Diffusion

• For Exact-Diffusion, each node run the following recursion in parallel

ψ
(k+1)
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i) (local SGD)

φ
(k+1)
i = ψ

(k+1)
i + x

(k)
i − ψ

(k)
i (bias correction)

x
(k+1)
i =

∑
j∈Ni

wij φ
(k+1)
j (partial averaging)

• When correction term x
(k)
i − ψ

(k)
i is removed from the correction step,

Exact-Diffusion reduces to standard D-SGD

• The weight matrix W needs to be symmetric, and satisfies λn(W) > − 1
3

44 / 71

How is Exact-Diffusion immune to data heterogeneity?

• Combining all recursions, we achieve the deterministic version

x
(k+1)
i =

∑
j∈Ni

wij

(
2x(k)

i − x
(k−1)
i + γ(∇f(x(k)

i)−∇f(x(k−1)
i))

)

• Assume x(k−1)
i = x

(k)
i = x? for any i ∈ [n], at iteration k + 1 we have

x
(k+1)
i =

∑
j∈Ni

wij(2x? − x?) = x?

• When initialized from the minimum, Exact-Diffusion can stay there in
spite of the data heterogeneity ∇fi(x) 6= ∇fj(x)

45 / 71

Exact-Diffusion convergence

Assumption
(A1) Each local loss function F (x; ξi) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance σ2

(A3) Each local stochastic gradient g(k)
i is independent of each other

(A4) W is positive semi-definite

Theorem (Yuan and Alghunaim (2021))
Under the above assumptions and with appropriate γ, Exact-Diffusion will
converge at (S.C. is for strongly-convex and G.C. is for generally-convex)

1
T + 1

T∑
k=0

(
Ef(x̄(k))− f(x?)

)
= O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3

)
(G.C.)

1
HT

T∑
k=0

hk
(
Ef(x̄(k))− f(x?)

)
= Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2

)
(S.C.)

where hk is some positive weight and HT =
∑T

k=0 hk.

46 / 71

Convergence comparison: Exact-Diffusion v.s. D-SGD

In the strongly-convex setting,

• The convergence rate comparison:

D-SGD : Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2 + ρ2b2

(1− ρ)2T 2

)
Exact-Diffusion : Õ

(
σ2

nT
+ ρ2σ2

(1− ρ)T 2

)

• The transient iteration complexity comparison (Huang and Pu, 2021; Yuan
and Alghunaim, 2021):

D-SGD : Ω
(

ρ2n

(1− ρ)2

)
Exact-Diffusion : Ω

(
ρ2n

1− ρ

)

47 / 71

Convergence comparison: Exact-Diffusion v.s. D-SGD

In the generally-convex setting,

• The convergence rate comparison:

D-SGD : O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3 + ρ2/3b2/3

(1− ρ)2/3T 2/3

)
Exact-Diffusion : O

(
σ√
nT

+ ρ2/3σ2/3

(1− ρ)1/3T 2/3

)

• The transient iteration comparison (Yuan and Alghunaim, 2021):

D-SGD : Ω
(

ρ4n3

(1− ρ)4

)
Exact-Diffusion : Ω

(
ρ4n3

(1− ρ)2

)

48 / 71

Convergence comparison: Exact-Diffusion v.s. D-SGD

In the non-convex setting,

• Exact-Diffusion can remove data heterogeneity (Tang et al., 2018), but no
improved result on network topology dependence was shown

• Gradient-tracking can remove data heterogeneity (Xin et al., 2020b;
Zhang and You, 2019; Lu et al., 2019), but no improved result on network
topology dependence was shown

• It is still an open question whether data-heterogeneity-corrected methods
(such as EXTRA, Exact-Diffusion, and Gradient tracking) can have an
improved network topology dependence than P-SGD

49 / 71

Experiments: Exact-Diffusion v.s. D-SGD

Convex setting: logistic regression problem; non-iid scenario

50 / 71

Convergence comparison: Exact-Diffusion v.s. D-SGD

Strongly-convex setting: least-square problem; non-iid scenario

51 / 71

Convergence comparison: Exact-Diffusion v.s. D-SGD

Deep learning experiments are on-going. No results yet.

52 / 71

Summary

• The data heterogeneity b2 in D-SGD deteriorates the topology dependence

• EXTRA/Exact-Diffusion/Gradient-tracking can remove the influence of b2

• Exact-Diffusion improves the topology dependence when b2 exists.

non-iid scenario Exact-Diffusion D-SGD

strongly-convex Ω(ρ
2n

1−ρ) Ω(ρ2n
(1−ρ)2)

generally-convex Ω(ρ4n3

(1−ρ)2) Ω(ρ4n3

(1−ρ)4)

non-convex N.A. Ω(ρ4n3

(1−ρ)4)

53 / 71

Part II: Making Decentralized SGD Practical for DNN

• Sec. 1. Exponential graphs are provably efficient (Ying et al., 2021)

• Sec. 2. Removing data heterogeneity enhances topology dependence
(Huang and Pu, 2021; Yuan and Alghunaim, 2021)

• Sec. 3. Periodic global averaging (Chen et al., 2021)

54 / 71

Motivation

• Recall non-convex D-SGD suffers from additional transient iterations

homogeneous (iid) data: Ω
(

ρ4n3

(1− ρ)2

)
heterogeneous (non-iid) data: Ω

(
ρ4n3

(1− ρ)4

)
• ρ→ 1 will significantly enlarge the transient iteration stage

• Unfortunately, most topologies have ρ→ 1 as n grows

• Ring: 1− ρ = O(1/n2);
• Grid: 1− ρ = O(1/n);
• Exp.: 1− ρ = O(1/ log2(n))

• We have to alleviate the influence of 1/(1− ρ) in trans. iters. complexity

55 / 71

Per-iteration communication cost

Model Ring-Allreduce Partial average

ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

• While global average takes longer comm. time, it is not too bed

• We can mix partial average with global average (Chen et al., 2021)3.

• In a period of H iterations: run H − 1 partial average and 1 global average

3Y. Chen∗, K. Yuan∗, Y. Zhang, P. Pan, Y. Xu, W. Yin, “Accelerating Gossip SGD with Periodic Global
Averaging”, ICML 2021

56 / 71

DSGD-PGA: DSGD with Periodic Global Averaging

• DSGD-PGA: accelerate D-SGD with periodic global averaging

x
(k+ 1

2)
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k+1)
i)

x
(k+1)
i =

{
1
n

∑n

j=1 x
(k+ 1

2)
j If mod(k + 1, H) = 0∑

j∈Ni
wijx

(k+ 1
2)

j If mod(k + 1, H) 6= 0

where H is the global averaging period.

• DSGD-PGA is expected to converge faster than D-SGD.

• DSGD-PGA reduces to D-SGD when H →∞

• Similar idea also appeared in topology-changing D-SGD (Koloskova et al.,
2020) and SlowMo (Wang et al., 2019)

57 / 71

DSGD-PGA: Transient iteration complexity

• PGA significantly improves the transient stage of D-SGD in the
non-convex setting (Chen et al., 2021):

scenario DSGD-PGA D-SGD

iid data Ω(ρ4n3H2) Ω(ρ4n3

(1−ρ)2)

non-iid data Ω(ρ4n3H4) Ω(ρ4n3

(1−ρ)4)

• PGA bounds 1/(1− ρ) with H; benefits most for sparse topology

58 / 71

Numerical experiments: D-SGD v.s. DSGD-PGA

Problem: logistic regression problem with non-iid data

Cyclic Topology

Figure: Transient stage comparison.

59 / 71

DSGD-AGA: D-SGD with Adaptive Global Averaging

• Gossip-AGA avoids the burden of turning parameters

• An effective period strategy: more frequent GA in initial stages

• Intuition: lower consensus variance can speedup convergence

1
n(T + 1)

T∑
k=0

n∑
i=1

E‖x(k)
i − x̄(k)‖2 ≤ d1γ

2

T + 1

T∑
k=0

E‖∇f(x̄(k))‖2 + d2γ
2

Consensus variance gets decreased as γ → 0 and E‖∇f(x̄(k))‖2 → 0

• Adaptive rule: H(`) =
(

Ef(x̄(0))
Ef(x̄

(T`−1))

) 1
4
H(0);

60 / 71

Experiments on Large-scale Deep Training

Language Modeling:

• Model: BERT-Large (∼330M parameters)
• Dataset: Wikipedia (2500M words) and BookCorpus (800M words)
• Hardware: 64 GPUs

61 / 71

Image Classification

Method Final Loss Wall-clock Time (hrs)

P-SGD 1.75 59.02
D-SGD 2.17 29.7

D-SGD ×2 1.81 59.7
DSGD-PGA 1.82 35.4
DSGD-AGA 1.77 30.4

Table: Comparison of training loss and training time of BERT training.

• DSGD-AGA acheives similar final loss with 2× speedup

62 / 71

Summary

• Periodic global averaging can improve the transient iteration stage:

Ω(ρ4n3

(1− ρ)4) =⇒ Ω(ρ4n3H4)

• PGA benefits most for sparse topology, i.e., ρ→ 1

• Global averaging period H can be adjusted adaptively

63 / 71

Discussion

• We consider deep training within high-performance data-center clusters

• Global averaging conducted by All-reduce has tolerable comm. cost

• For mobile AI or federated learning, global averaging is very expensive

• We can approximate global averaging via multiple partial averaging steps,
see [Lu and De Sa, 2021, ICML Outstanding Paper Honorable mention]

• However, multiple partial averaging steps are not recommended for
data-center clusters; 3 partial averaging steps may take more wall-clock
time than one single global averaging

64 / 71

In Part III, we will

Discuss large-batch decentralized deep training, and

Introduce BlueFog, an open-source library to help deploy decentralized methods
into real CPU/GPU clusters

65 / 71

References I

S. Pu, A. Olshevsky, and I. C. Paschalidis, “Asymptotic network independence
in distributed stochastic optimization for machine learning: Examining
distributed and centralized stochastic gradient descent,” IEEE Signal
Processing Magazine, vol. 37, no. 3, pp. 114–122, 2020.

B. Ying, K. Yuan, Y. Chen, H. Hu, P. Pan, and W. Yin, “Exponential graph is
provably efficient for deep training,” in Submitted, 2021.

K. Huang and S. Pu, “Improving the transient times for distributed stochastic
gradient methods,” arXiv preprint arXiv:2105.04851, 2021.

K. Yuan and S. A. Alghunaim, “Removing data heterogeneity influence
enhances network topology dependence of decentralized sgd,” arXiv preprint
arXiv:2105.08023, 2021.

Y. Chen, K. Yuan, Y. Zhang, P. Pan, Y. Xu, and W. Yin, “Accelerating gossip
sgd with periodic global averaging,” International Conference on Machine
Learning, 2021.

66 / 71

References II

A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2017, pp. 5330–5340.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” in International Conference on Machine
Learning, 2018, pp. 3043–3052.

M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for
distributed deep learning,” in International Conference on Machine Learning
(ICML), 2019, pp. 344–353.

T. Lin, S. P. Karimireddy, S. U. Stich, and M. Jaggi, “Quasi-global momentum:
Accelerating decentralized deep learning on heterogeneous data,” arXiv
preprint arXiv:2102.04761, 2021.

67 / 71

References III

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A unified
theory of decentralized sgd with changing topology and local updates,” in
International Conference on Machine Learning (ICML), 2020, pp. 1–12.

K. Yuan, S. A. Alghunaim, B. Ying, and A. H. Sayed, “On the influence of
bias-correction on distributed stochastic optimization,” IEEE Transactions on
Signal Processing, 2020.

W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm
for decentralized consensus optimization,” SIAM Journal on Optimization,
vol. 25, no. 2, pp. 944–966, 2015.

K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffusion for distributed
optimization and learning – Part I: Algorithm development,” IEEE
Transactions on Signal Processing, vol. 67, no. 3, pp. 708 – 723, 2019.

Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with
network independent step-sizes and separated convergence rates,” IEEE
Transactions on Signal Processing, July 2019, early acces. Also available on
arXiv:1704.07807.

68 / 71

References IV

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized training
over decentralized data,” in International Conference on Machine Learning,
2018, pp. 4848–4856.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in IEEE Conference on Decision and Control (CDC), Osaka,
Japan, 2015, pp. 2055–2060.

P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 2, no. 2, pp. 120–136, 2016.

A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM Journal on
Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, 2018.

69 / 71

References V

S. Pu, W. Shi, J. Xu, and A. Nedić, “Push–pull gradient methods for
distributed optimization in networks,” IEEE Transactions on Automatic
Control, vol. 66, no. 1, pp. 1–16, 2020.

R. Xin and U. A. Khan, “A linear algorithm for optimization over directed
graphs with geometric convergence,” IEEE Control Systems Letters, vol. 2,
no. 3, pp. 315–320, 2018.

S. A. Alghunaim, E. K. Ryu, K. Yuan, and A. H. Sayed, “Decentralized
proximal gradient algorithms with linear convergence rates,” IEEE
Transactions on Automatic Control, vol. 66, no. 6, pp. 2787–2794, 2020.

J. Xu, Y. Tian, Y. Sun, and G. Scutari, “Distributed algorithms for composite
optimization: Unified framework and convergence analysis,” IEEE
Transactions on Signal Processing, 2021.

R. Xin, S. Pu, A. Nedić, and U. A. Khan, “A general framework for
decentralized optimization with first-order methods,” Proceedings of the
IEEE, vol. 108, no. 11, pp. 1869–1889, 2020.

70 / 71

References VI

R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis for
decentralized online stochastic non-convex optimization,” arXiv preprint
arXiv:2008.04195, 2020.

J. Zhang and K. You, “Decentralized stochastic gradient tracking for
non-convex empirical risk minimization,” arXiv preprint arXiv:1909.02712,
2019.

S. Lu, X. Zhang, H. Sun, and M. Hong, “Gnsd: A gradient-tracking based
nonconvex stochastic algorithm for decentralized optimization,” in 2019
IEEE Data Science Workshop (DSW). IEEE, 2019, pp. 315–321.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “Slowmo: Improving
communication-efficient distributed sgd with slow momentum,” arXiv
preprint arXiv:1910.00643, 2019.

71 / 71

	References

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.2:
	0.1:
	0.0:

