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Contents in the lecture

Introduction to deep neural network (DNN) and various training modes (Part I)

• Stochastic gradient descent and single-node training
• Parallel/distributed training
• Decentralized training

Making decentralized algorithms practical for large-scale deep training (Part II)

• Exponential graphs
• Primal-dual decentralized methods
• Periodic global averaging

Other advanced topics and BlueFog (Part III)

• Large-batch deep training
• An open source decentralized deep training framework: BlueFog
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Part I: Deep Neural Network (DNN) Training Algorithms
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Part I: Deep Neural Network (DNN) Training Algorithms

• Sec.1: Deep Neural Network Model

• Sec.2: Stochastic Gradient Descent and Single-Node Training

• Sec.3: Parallel/Distributed Training

• Sec.4: Decentralized Training
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Deep Neural Network

• DNN is widely used in almost all AI applications

• A typical DNN model includes a feature extractor and a classifier

• Well-trained DNN can make precise predictions
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A practical DNN example1

1Source: analyticsvidhya.com
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DNN model

• We model DNN as h(x; ξ) : Rd → Rc

• x ∈ Rd is the DNN model parameter to be trained
• ξ is the input data sample
• c is the number of classes

• Given the model parameter x, DNN outputs prediction scores ŷi for input ξi
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DNN model: a trivial example

• Given model parameter x = [W ; b], and a linear model h(x; ξ) = Wξ + b,

• An illustration of the trivial DNN model and its output is as follows2

2Source: https://cs231n.github.io/linear-classify/
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How to train a DNN model?

• Given model parameter x, DNN h(x; ξ) can make precise predictions

• But how to train/achieve the model parameter x ?

• Given a dataset {ξi, yi}mi=1 where yi is the ground-truth label for data ξi

• Define L(ŷi, yi) = L(h(x; ξi), yi) as a loss function to measure the
difference/mismatch between predictions and ground-truth labels

• DNN training is to find a model parameter x such that the mismatch
(between pred and real) are minimized across the entire dataset:

x? = arg min
x∈Rd

{
1
m

m∑
i=1

L(h(x; ξi), yi)

}
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DNN model is notoriously difficult to train

• DNN model L(h(x; ξ), y) is highly non-convex, and probably non-smooth

h(x; ξ) = ψ(· · ·ψ(W2 · ψ(W1ξ + b1) + b2) · · · )

L(ŷ; y) = 1
2‖y − ŷ‖

2 or − y log(ŷi) or others

where x = {Wi, bi} and ψ(·) is a non-linear activation function
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DNN model is notoriously difficult to train

• Cannot find global minima; trapped into local minima and saddle points

• The dimension of model parameter x = {Wi, bi} (or model size) is huge3

3Image source: neowin.net
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DNN model is notoriously difficult to train

• Cannot find global minima; trapped into local minima and saddle points

• The dimension of model parameter x = {Wj , bj} (or model size) is huge

• The size of the dataset {ξi, yi}mi=1 is huge

DNN Trainig = Non-convexity training + Huge dimension + Huge dataset
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Part I: Deep Neural Network (DNN) Training Algorithms

• Sec.1: Deep Neural Network Model

• Sec.2: Stochastic Gradient Descent and Single-Node Training

• Sec.3: Parallel/Distributed Training

• Sec.4: Decentralized Training
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DNN model formulated as stochastic optimization

• Recall the DNN training problem

min
x∈Rd

1
m

m∑
i=1

L(h(x; ξi), yi)

• x is the model parameter to train; {ξi, yi}mi=1 is the dataset

• h(x; ξ) is the DNN model; highly non-convex

• L(ŷ, y) is the loss function

• Let ξi := {ξi, yi} and F (x; ξi) := L(h(x; ξi), yi), the problem becomes

min
x∈Rd

1
m

m∑
i=1

F (x; ξi)

which is a finite-sum empirical risk minimization (ERM) problem.
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DNN model formulated as stochastic optimization

• When ξ follows distribution D, DNN training can also be formulated as

min
x∈Rd

f(x) where f(x) = Eξ∼DF (x; ξ)

which is a stochastic optimization problem.

• ERM is a good approximation to the above problem, especially for large m

• In this lecture, we will focus on the above stochastic problem formulation.
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Stochastic gradient descent

• D is unknown; no closed-form for f(x); cannot use gradient descent

• The most popular algorithm is stochastic gradient descent (SGD)
(Robbins and Monro, 1951; Bottou, 2010)

• Main idea: sample one (or one batch of) data sample and perform SGD

x(k+1) = x(k) − γ∇F (x(k); ξ(k))

• ξ(k) is the data sampled at iteration k
• ∇F (x(k); ξ(k)) is a stochastic gradient associated with sample ξ(k)

• γ is the learning rate
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Why does stochastic gradient descent work?

• If stochastic gradient is unbiased, i.e.,

Eξ∼D∇F (x(k); ξ) = ∇Eξ∼D[F (x(k); ξ)] = ∇f(x(k)),

the SGD recursion in expectation becomes

E[x(k+1)] = E[x(k)]− γE[∇F (x(k); ξ)]

= E[x(k)]− γ∇f(x(k)),

which reduces to a deterministic gradient descent.

• In other words, SGD is equivalent to GD in expectation. This intuitively
explains why SGD works.
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Stochastic gradient descent: convergence

Assumption
(A1) The loss function F (x; ξ) is L-smooth in terms of x;
(A2) The stochastic gradient is unbiased, and has bounded variance σ2.

Theorem
Under the above assumptions, and let γ = O(1/

√
T ), we have

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
T

)
where T ≥ 1 is the number of iterations

Note that we do no assume convexity for f(x).
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Stochastic gradient descent: convergence

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
T

)

• When iteration T →∞, it holds that E‖∇f(x(k))‖2 → 0

• E‖∇f(x(k))‖2 → 0 implies SGD converges to a stationary solution

• A stationary solution can be local min, local max, or saddle point4

4Image source: from Prof. Rong Ge’s online post
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Stochastic gradient descent: convergence

• Generally speaking, approaching the stationary solution is the best result
we can get for SGD; no guarantee to approach the global minimum

• Empirically, SGD performs extremely well when training DNN

• Recent advanced studies show SGD can escape local maximum, saddle
point, and even “sharp” local minimum, see, e.g., (Ge et al., 2015; Sun
et al., 2015; Jin et al., 2017; Du et al., 2018, 2019; Kleinberg et al., 2018)
and references therein

• SGD can even find global minimum under certain conditions, e.g. the PL
condition (Karimi et al., 2016)

• However, we will skip these exciting results in this lecture
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Implementing SGD in DNN training

• Stochastic gradient can be calculated via forward-backward propagation

• Stochastic gradient can be achieved automatically via Pytorch/Tensorflow

• DNN training typically utilizes GPUs

• Momentum-SGD/ADAM are very useful to accelerate DNN training
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Image Classification

• Cifar-10 dataset
• 50K training images
• 10K test images
• DNN model: ResNet-18
• GPU: Tesla V100
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Image Classification
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Part I: Deep Neural Network (DNN) Training Algorithms

• Sec.1: Deep Neural Network Model

• Sec.2: Stochastic Gradient Descent and Single-Node Training

• Sec.3: Parallel/Distributed Training

• Sec.4: Decentralized Training
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Parallel/Distributed training is necessary in DNN

• Scale to larger models and bigger data

• Bring down training time from days to hours

• Different types of parallel training:

• Data-parallel training: share the model; partition the data

• Model-parallel training: share the data; partition the model

• Data-parallel and model-parallel mixed training

• In this lecture, we will focus on data-parallel training
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Data-parallel and model-parallel training5

5Image source: https://xiandong79.github.io/Intro-Distributed-Deep-Learning
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DNN training formulated as distributed optimization

• A network of n nodes (GPUs) collaborate to solve the problem:

min
x∈Rd

f(x) = 1
n

n∑
i=1

[fi(x) = Eξi∼DiF (x; ξi)].

• Each component fi : Rd → R is local and private to node i

• Random variable ξi denotes the local data that follows distribution Di

• Each local distribution Di may be different; data heterogeneity

27 / 64



DNN training formulated as distributed optimization

• We consider deep training within high-performance data-center clusters

• all GPUs are connected with high-bandwidth channels

• network topology can be fully controlled

• communication is highly reliable; no occasional link failure

• Different from the mobile AI applications, or Federated Learning where

• nodes are connected with low-bandwidth channels

• network topology can not be controlled

• communication is highly fragile; occasional link failures
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Parallel stochastic gradient descent (SGD)

g
(k)
i = ∇F (x(k); ξ(k)

i ) (Local compt.)

x(k+1) = x(k) − γ

n

n∑
i=1

g
(k)
i (Global comm.)

• Each node i samples data ξ(k)
i and computes gradient ∇F (x(k); ξ(k)

i )

• All nodes synchronize (i.e. global averaged) to update model x

• Global average incurs significant comm. cost; hinders training scalability
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Global average via Parameter-Server (Li et al., 2014)

Parameter Server
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Global average via Ring-Allreduce (Patarasuk and Yuan,
2009)
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Parallel SGD convergence

Assumption
(A1) Each local loss function F (x; ξi) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance σ2:

E[g(k)
i ] = ∇fi(x(k)), E‖g(k)

i −∇fi(x
(k))‖2 ≤ σ2

(A3) Each local stochastic gradient g(k)
i is independent of each other

The variance of the globally averaged gradient is remarkably reduced:

E‖ 1
n

n∑
i=1

g
(k)
i −∇f(x(k))‖2 = 1

n2

n∑
i=1

E‖g(k)
i −∇fi(x

(k))‖2 ≤ σ2

n
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Parallel SGD (P-SGD) convergence

• Substituting the above inequality into the derivation, we achieve

Theorem (Parallel SGD convergence)

Under the above assumptions, and let γ = O(1/
√
T ), we have

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

)
where T ≥ 1 is the number of iterations, n is the number of nodes.

• We achieve single-node SGD convergence when n = 1
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Parallel SGD can achieve linear speedup

• Recall the SGD convergence rate:

Single-node training: 1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
T

)

n-node parallel training: 1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

)

• To achieve an ε-accurate solution, i.e., 1
T

∑T−1
k=0 E‖∇f(x(k))‖2 ≤ ε,

Single-node training requires σ2

ε2 iterations

n-node parallel training requires σ2

nε2 iterations

• Iteration complexity is inversely proportional to n; P-SGD has linear speedup
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Image Classification

• ImageNet-1K dataset
• 1.3M training images
• 50K test images
• 1K classes
• DNN Model: ResNet-50

(∼25.5M parameters)
• GPU: Tesla V100 clusters
• Framework: Pytorch DDP
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Parallel SGD has linear speedup in DNN training

• Wall-clock training time to achieve > 76% top-1 accuracy (black box
indicates ideal running time linear speedup)

• Cannot achieve ideal linear speedup due to comm. cost

• Global average incurs significant comm. cost; hinders training scalability
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Comm. overhead in global average

• A single communication includes bandwidth cost and latency (Ben-Nun
and Hoefler, 2019)

• The single communication cost

Bandwidth Cost Latency Total Cost
Parameter server Ω(n) Ω(1) Ω(n+ 1)

Ring allreduce Ω(1) Ω(n) Ω(1 + n)

• In either approach, the cost is Ω(n), proportional to network size n.

• In deep training, the bandwidth cost is typically more severe; but latency
cannot be ignored neither

• To approach the ideal linear speedup, comm. cost must be reduced
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Approaches to saving communication cost

• Model/Gradient sparsification (Tang et al., 2019; Koloskova et al.,
2019a,b; Wangni et al., 2017; Alistarh et al., 2018; Stich et al., 2018)

• Model/Gradient quantization (Das et al., 2018; Alistarh et al., 2017;
Bernstein et al., 2018; Wen et al., 2017)

• Local SGD/lazy-communication (Chen et al., 2018; Liu et al., 2019; Chen
et al., 2020; Zinkevich et al., 2010; Zhang et al., 2016; Stich, 2019; Yu
et al., 2019a,b; Lin et al., 2018; McMahan et al., 2017; Li et al., 2019a)

• Decentralized communication (Lopes and Sayed, 2008; Nedic and
Ozdaglar, 2009; Shi et al., 2015; Yuan et al., 2016; Assran et al., 2019;
Yuan et al., 2019; Li et al., 2019b; Di Lorenzo and Scutari, 2016; Nedic
et al., 2017; Qu and Li, 2018)
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Part I: Deep Neural Network (DNN) Training Algorithms

• Sec.1: Deep Neural Network Model

• Sec.2: Stochastic Gradient Descent and Single-Node Training

• Sec.3: Parallel/Distributed Training

• Sec.4: Decentralized Training
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Decentralized SGD: topology

• Assume we connect all nodes with some topology (n=16)

• Communication is only allowed between neighbors

• No global synchronization is allowed
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Decentralized SGD: weight matrix

• The weight matrix associated with the topology is defined as

wij

{
> 0 if node j is connected to i, or i = j;
= 0 otherwise.

• Throughout the lecture we assume the row and column sums of W to be 1

• An example:

Figure: A directed ring topology and its associated combination matrix W .

41 / 64



Decentralized SGD (D-SGD): partial averaging

• D-SGD is based on partial-averaging within neighborhood

Partial averaging: x+
i ←

∑
j∈Ni

wijxj . ∀i ∈ [n]

• Ni is the set of neighbors of node i

• Each node only communicates with neighbors; no global sync

• Incurs Ω(dmax) comm. overhead (dmax: maximum degree)
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Maximum degree6

6Image source:
43 / 64



Decentralized SGD (D-SGD): recursions

• D-SGD = local SGD update+ paritial averaging (Loizou and Richtárik,
2020; Nedic and Ozdaglar, 2009; Chen and Sayed, 2012)

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

wijx
(k+ 1

2 )
j (Partial averaging)

• Per-iteration communication: Ω(dmax)� Ω(n) when topology is sparse

• Incurs Ω(1) comm. overhead on sparse topology (ring or grid)

44 / 64



Decentralized SGD is more communication efficient

Model Ring-Allreduce Partial average

ResNet-50 278 ms 150 ms
Bert 1469 ms 567 ms

Table: Comparison of per-iter comm. in terms of runtime with 256 GPUs

• ResNet-50 has 25.5M parameters; Bert has 300M parameters

• Partial average saves more communication for larger model
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However, D-SGD has slower convergence

• The efficient communication comes with a cost: slow convergence

• Partial averaging is less effective to aggregate information

• The average effectiveness can be evaluated by spectral gap:

ρ = ‖W − 1
n
11

T ‖2

• Assume W is doubly-stochastic, it holds that ρ ∈ (0, 1).

• Well-connected topology has ρ→ 0, e.g. fully-connected topology

• Sparsely-connected topology has ρ→ 1, e.g., ring has ρ = O(1− 1
n2 )
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Weight-matrix of the fully-connected topology
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Decentralized SGD convergence

Recall the assumptions of P-SGD:

Assumption
(A1) Each local loss function F (x; ξi) is L-smooth in terms of x;
(A2) Each local stochastic gradient is unbiased, and has bounded variance σ2:

E[g(k)
i ] = ∇fi(x(k)), E‖g(k)

i −∇fi(x
(k))‖2 ≤ σ2

(A3) Each local stochastic gradient g(k)
i is independent of each other

We further introduce another data-heterogeneity assumption

Assumption
(A4) The data heterogeneity is bounded, i.e.,

1
n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ b2, ∀x ∈ Rd

When Di is identical, we have ∇fi(x) = ∇f(x) for any i and hence b2 = 0
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Decentralized SGD convergence

• (Lian et al., 2017; Assran et al., 2019; Koloskova et al., 2020) show that

Theorem (Decentralized SGD convergence)

Under Assumptions (A1)-(A4), and let γ = O(1/
√
T ), we have

1
T

T−1∑
k=0

E‖∇f(x(k))‖2 = O

(
σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3 + ρ2/3b2/3

T 2/3(1− ρ)2/3

)
where T ≥ 1 is the number of iterations, and n is the number of nodes.

• When topology is fully connected (ρ = 0), D-SGD reduces to P-SGD.

• When ρ = 0 and n = 1, D-SGD reduces to single-node SGD
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Convergence rate: P-SGD v.s. D-SGD

• Convergence comparison (i.i.d data distribution, i.e., b2 = 0):

P-SGD : 1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

)
D-SGD : 1

T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ√
nT

+ ρ2/3σ2/3

T 2/3(1− ρ)1/3︸ ︷︷ ︸
extra overhead

)

where σ2 is the gradient noise, and T is the number of iterations.

• D-SGD can asymptotically converge as fast as P-SGD when T →∞; the
first term dominates; reach linear speedup asymptotically

• But it requires more iteration (i.e., T has to be large enough) to reach
that stage due to the extra overhead caused by partial averaging
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Transient iterations

• Definition (Pu et al., 2020): number of iterations before D-SGD achieves
linear speedup

• Transient iterations measure the converg. gap between P-SGD and D-SGD

• Longer tran. iters. =⇒ slower convergence than P-SGD

• The transient iteration complexity of D-SGD is

iid data : ρ2/3σ2/3

T 2/3(1− ρ)1/3 ≤
σ√
nT

=⇒ T = Ω( ρ4n3

(1− ρ)2 )

non-iid data : ρ2/3b2/3

T 2/3(1− ρ)2/3 ≤
σ√
nT

=⇒ T = Ω( ρ4n3

(1− ρ)4 )

• Sparse topology (ρ→ 1) incurs large tran. iters. complexity
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Transient iterations: illustration

Illustration of the tran. iters. on D-SGD over ring (logistic regression)
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If the transient stage is too long, we may not be able to achieve linear speedup
given the limited time/resource budget

52 / 64



Part I summary

• DNN training can be formulated as stochastic optimization

• SGD is the leading approach to train DNN

• Parallel SGD can achieve linear speedup theoretically; but the comm. cost
incurred by global average hinders its empirical linear speedup performance

• Decentralized SGD utilizes partial averaging within neighborhood; reduce
per-iter comm. cost from Ω(n) to Ω(dmax), and even Ω(1).

• D-SGD suffers from slower convergence; compensate its comm. efficiency.
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In Part II, we will

Introduce several techniques to accelerate D-SGD and make it practically
valuable for large-scale deep learning
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