Introduction to Discrete-time Averaging Systems

Chengcheng Zhao

Zhejiang University, Hangzhou, China \&University of Victoria, Victoria, Canada

August 2, 2021

Background

- Swarm behaviour in nature

(a) Bird flocking

(b) Ant swarming

(c) Fish Swarming

Background

- Swarm behaviour in nature

- No control center
- Individual animals only interact with their neighbours
- Collective animal behavior

How can we use the idea behind in social and engineering fields?

Background

- Consensus algorithms
- Average consensus: all states converges to average
- Maximum consensus: all states converge to maximum value
- Wide application
- Smart grids, VANETS, social networks, and crowd-sensing

Figure 1: Wide applications

Background

- Consensus algorithms
- Average consensus: all states converges to average
- Maximum consensus: all states converge to maximum value
- Wide application
- Smart grids, VANETS, social networks, and crowd-sensing

Figure 1: Wide applications

Two application examples to show the related averaging systems

Application Examples

Figure 2: Interactions in a social influence network

Application Examples

Figure 2: Interactions in a social influence network

- Social influence networks: opinion dynamics
- A group of n individuals who must act together as a team

Application Examples

Figure 2: Interactions in a social influence network

- Social influence networks: opinion dynamics
- A group of n individuals who must act together as a team
- Each individual has its own subjective estimate p_{i} for the unknown parameters

Application Examples

Figure 2: Interactions in a social influence network

- Social influence networks: opinion dynamics
- A group of n individuals who must act together as a team
- Each individual has its own subjective estimate p_{i} for the unknown parameters
- Individual i is appraised of p_{i} of each other member $j \neq i$ of the group

Application Examples

Figure 2: Interactions in a social influence network

- Social influence networks: opinion dynamics
- A group of n individuals who must act together as a team
- Each individual has its own subjective estimate p_{i} for the unknown parameters
- Individual i is appraised of p_{i} of each other member $j \neq i$ of the group
- How to model predictions that the individual will revise its estimate?

Application Examples

- Social influence networks: opinion dynamics
- The model (French-Harary-DeGroot) predicts that the individual will revise its estimate to be

$$
\begin{equation*}
p_{i}(k+1)=\sum_{j=1}^{n} a_{i j} p_{j}(k) \tag{1}
\end{equation*}
$$

Application Examples

- Social influence networks: opinion dynamics
- The model (French-Harary-DeGroot) predicts that the individual will revise its estimate to be

$$
\begin{equation*}
p_{i}(k+1)=\sum_{j=1}^{n} a_{i j} p_{j}(k) \tag{1}
\end{equation*}
$$

- $a_{i j} \geq 0$ denotes the weight that individual i assigns to individual j;
- $\sum_{j=1}^{n} a_{i j}=1$ for all i;
- $a_{i i}$ describes the attachment of individual i to its own opinion;
- $a_{i j}$ is an interpersonal influence weight that individual i accords to individual j;

Application Examples

- Social influence networks: opinion dynamics
- Scientific questions of interests
- Is this model of human opinion dynamics believable? Is there empirical evidence in its support?

Application Examples

- Social influence networks: opinion dynamics
- Scientific questions of interests
- Is this model of human opinion dynamics believable? Is there empirical evidence in its support?
- How does one measure the coefficients $a_{i j}$?

Application Examples

- Social influence networks: opinion dynamics
- Scientific questions of interests
- Is this model of human opinion dynamics believable? Is there empirical evidence in its support?
- How does one measure the coefficients $a_{i j}$?
- Under what conditions do the estimate converge to the same estimate? And to what final estimate?

Application Examples

- Social influence networks: opinion dynamics
- Scientific questions of interests
- Is this model of human opinion dynamics believable? Is there empirical evidence in its support?
- How does one measure the coefficients $a_{i j}$?
- Under what conditions do the estimate converge to the same estimate? And to what final estimate?
- What are more realistic, empirically-motivated models, possibly including stubborn individuals or antagonistic interactions?

Application Examples

- Wireless sensor networks
- A collection of spatially-distributed devices

Application Examples

- Wireless sensor networks
- A collection of spatially-distributed devices
- Measure physical and environmental variables (e.g., temperature, vibrations, sound, light, etc)

Application Examples

- Wireless sensor networks
- A collection of spatially-distributed devices
- Measure physical and environmental variables (e.g., temperature, vibrations, sound, light, etc)
- Perform local computations, and transmit information to neighboring device throughout the network

Application Examples

- Wireless sensor networks
- A collection of spatially-distributed devices
- Measure physical and environmental variables (e.g., temperature, vibrations, sound, light, etc)
- Perform local computations, and transmit information to neighboring device throughout the network
How can all devices obtain the accurate estimate in a distributed way?

Application Examples

Figure 3: The communication graph for devices

- Wireless sensor networks: linear averaging
- Each node has a measured temperature $x_{i}(0)$

Application Examples

Figure 3: The communication graph for devices

- Wireless sensor networks: linear averaging
- Each node has a measured temperature $x_{i}(0)$
- Apply the following linear averaging algorithm (Algorithm 1)

Application Examples

Figure 3: The communication graph for devices

- Wireless sensor networks: linear averaging
- Each node has a measured temperature $x_{i}(0)$
- Apply the following linear averaging algorithm (Algorithm 1)

$$
\begin{equation*}
x_{i}(k+1)=\operatorname{mean}\left(x_{i}(k),\left\{x_{j}(k)\right\}\right), \text { for all neighbors } j \tag{2}
\end{equation*}
$$

Application Examples

Figure 3: The communication graph for devices

- Wireless sensor networks: linear averaging
- Each node has a measured temperature $x_{i}(0)$
- Apply the following linear averaging algorithm (Algorithm 1)

$$
\begin{equation*}
x_{i}(k+1)=\operatorname{mean}\left(x_{i}(k),\left\{x_{j}(k)\right\}\right), \text { for all neighbors } j \tag{2}
\end{equation*}
$$

- $x_{i}(k+1)$ is the value at iteration k, update example: $x_{1}(k+1)=x_{1}(k) / 2+x_{2}(k) / 2$

Application Examples

Figure 3: The communication graph for devices

- Wireless sensor networks: linear averaging
- Each node has a measured temperature $x_{i}(0)$
- Apply the following linear averaging algorithm (Algorithm 1)

$$
\begin{equation*}
x_{i}(k+1)=\operatorname{mean}\left(x_{i}(k),\left\{x_{j}(k)\right\}\right), \text { for all neighbors } j \tag{2}
\end{equation*}
$$

- $x_{i}(k+1)$ is the value at iteration k, update example:

$$
x_{1}(k+1)=x_{1}(k) / 2+x_{2}(k) / 2
$$

- update rule $x(k+1)=A x(k)$

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{3}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

Application Examples

- Apply Algorithm 1

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{4}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

Application Examples

- Apply Algorithm 1

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{4}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

(a)

(b)

Figure 4: The original communication graph and the weighted graph

Application Examples

- Apply Algorithm 1

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{5}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

Application Examples

- Apply Algorithm 1

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{5}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

As the average is 24 , average consensus cannot be achieved.

Application Examples

- Apply a new weight strategy (Algorithm 2)

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{6}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

Application Examples

- Apply a new weight strategy (Algorithm 2)

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{6}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

(a)

(b)

Figure 5: The original communication graph and the weighted graph

Application Examples

- Apply a new weight strategy (Algorithm 2)

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{7}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

Application Examples

- Apply a new weight strategy (Algorithm 2)

$$
\left[\begin{array}{l}
x_{1}(k+1) \tag{7}\\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]
$$

As the average is 24 , average consensus can be achieved.

Application Examples

- Interesting findings

$$
A=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \tag{8}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right], A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

- A is a non-negative matrix

Application Examples

- Interesting findings

$$
A=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \tag{8}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right], A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

- A is a non-negative matrix
- A is a row stochastic matrix

Application Examples

- Interesting findings

$$
A=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \tag{8}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right], A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

- A is a non-negative matrix
- A is a row stochastic matrix
- The associated graph of A is strongly connected

Application Examples

- Interesting findings

$$
A=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \tag{8}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right], A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

- A is a non-negative matrix
- A is a row stochastic matrix
- The associated graph of A is strongly connected
- When can we achieve average consensus?

Application Examples

- Interesting findings

$$
A=\left[\begin{array}{cccc}
3 / 4 & 1 / 4 & 0 & 0 \tag{8}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 5 / 12 & 1 / 3 \\
0 & 1 / 4 & 1 / 3 & 5 / 12
\end{array}\right], A=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

- A is a non-negative matrix
- A is a row stochastic matrix
- The associated graph of A is strongly connected
- When can we achieve average consensus?

In Algorithm 2, A is symmetric

Averaging Systems

- Dynamic model

$$
\begin{equation*}
x(k+1)=A x(k) \tag{9}
\end{equation*}
$$

Averaging Systems

- Dynamic model

$$
\begin{gather*}
x(k+1)=A x(k) \tag{9}\\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], x(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\cdots \\
x_{n}(k)
\end{array}\right] \tag{10}
\end{gather*}
$$

Averaging Systems

- Dynamic model

$$
\begin{gather*}
x(k+1)=A x(k) \tag{9}\\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], x(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\cdots \\
x_{n}(k)
\end{array}\right] \tag{10}
\end{gather*}
$$

- $A \in \mathbb{R}^{n \times n}$ has non-negative entries and unit row sums
- $x(k) \in \mathbb{R}^{n}, k \geq 0$
$x_{i}(0)$ is the initial scalar state (temperature, vibrations, sound, light) $x_{i}(k)$ is the updated state at iteration k

Averaging Systems

- Dynamic model

$$
\begin{gather*}
x(k+1)=A x(k) \tag{9}\\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], x(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\cdots \\
x_{n}(k)
\end{array}\right] \tag{10}
\end{gather*}
$$

- $A \in \mathbb{R}^{n \times n}$ has non-negative entries and unit row sums
- $x(k) \in \mathbb{R}^{n}, k \geq 0$
$x_{i}(0)$ is the initial scalar state (temperature, vibrations, sound, light) $x_{i}(k)$ is the updated state at iteration k
- Interesting problems for the averaging model
- Does each node converge to a value? Is this value the same for all nodes (consensus)?

Averaging Systems

- Dynamic model

$$
\begin{gather*}
x(k+1)=A x(k) \tag{9}\\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], x(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\cdots \\
x_{n}(k)
\end{array}\right] \tag{10}
\end{gather*}
$$

- $A \in \mathbb{R}^{n \times n}$ has non-negative entries and unit row sums
- $x(k) \in \mathbb{R}^{n}, k \geq 0$
$x_{i}(0)$ is the initial scalar state (temperature, vibrations, sound, light) $x_{i}(k)$ is the updated state at iteration k
- Interesting problems for the averaging model
- Does each node converge to a value?

Is this value the same for all nodes (consensus)?

- Is this value equal to the average of the initial conditions?

When do the agents achieve average consensus?

Averaging Systems

- Dynamic model

$$
\begin{equation*}
x(k+1)=A x(k) \tag{9}
\end{equation*}
$$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{10}\\
a_{21} & a_{22} & \cdots & a_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], x(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\cdots \\
x_{n}(k)
\end{array}\right]
$$

- $A \in \mathbb{R}^{n \times n}$ has non-negative entries and unit row sums
- $x(k) \in \mathbb{R}^{n}, k \geq 0$
$x_{i}(0)$ is the initial scalar state (temperature, vibrations, sound, light) $x_{i}(k)$ is the updated state at iteration k
- Interesting problems for the averaging model
- Does each node converge to a value?

Is this value the same for all nodes (consensus)?

- Is this value equal to the average of the initial conditions?

When do the agents achieve average consensus?

- What properties do the graph and the corresponding matrix need to have in order for the algorithm to converge?

Averaging Systems

- Dynamic model

$$
\begin{align*}
x(k+1) & =A x(k) \Rightarrow x(k)=A x(k-1) \\
& =A \times A x(k-1) \\
& =\vdots \tag{11}\\
& =A^{(k+1)} x(0)
\end{align*}
$$

Averaging Systems

- Dynamic model

$$
\begin{align*}
x(k+1) & =A x(k) \Rightarrow x(k)=A x(k-1) \\
& =A \times A x(k-1) \\
& =\vdots \tag{11}\\
& =A^{(k+1)} x(0)
\end{align*}
$$

- Jordan normal form

$$
\begin{align*}
A=P J P^{-1} \Rightarrow x(k+1) & =A^{(k+1)} x(0) \\
& =\left(P J P^{-1}\right)^{k+1} x(0) \tag{12}
\end{align*}
$$

Averaging Systems

- Dynamic model

$$
\begin{align*}
x(k+1) & =A x(k) \Rightarrow x(k)=A x(k-1) \\
& =A \times A x(k-1) \\
& =\vdots \tag{11}\\
& =A^{(k+1)} x(0)
\end{align*}
$$

- Jordan normal form

$$
\begin{align*}
& \begin{aligned}
A=P J P^{-1} \Rightarrow x(k+1) & =A^{(k+1)} x(0) \\
& =\left(P J P^{-1}\right)^{k+1} x(0)
\end{aligned} \\
& \begin{aligned}
A^{2}=P J P^{-1} P J P^{-1}=P J^{2} P^{-1}
\end{aligned} \tag{12}\\
& A^{k}=P J P^{-1} P J P^{-1} \cdots P J P^{-1}=P J^{k} P^{-1} \\
& \Rightarrow \tag{13}
\end{align*}
$$

Averaging Systems

- Dynamic model

$$
\begin{align*}
x(k+1) & =A x(k) \Rightarrow x(k)=A x(k-1) \\
& =A \times A x(k-1) \\
& =\vdots \tag{11}\\
& =A^{(k+1)} x(0)
\end{align*}
$$

- Jordan normal form

$$
\begin{align*}
& \begin{aligned}
A=P J P^{-1} \Rightarrow x(k+1) & =A^{(k+1)} x(0) \\
& =\left(P J P^{-1}\right)^{k+1} x(0)
\end{aligned} \\
& \begin{aligned}
A^{2}=P J P^{-1} P J P^{-1}=P J^{2} P^{-1}
\end{aligned} \tag{12}\\
& A^{k}=P J P^{-1} P J P^{-1} \cdots P J P^{-1}=P J^{k} P^{-1} \\
& \Rightarrow \tag{13}
\end{align*}
$$

Averaging Systems

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric

Averaging Systems

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric

$$
\begin{equation*}
x(k+1)=A^{(k+1)} x(0)=P J^{k+1} P^{-1} x(0) \tag{14}
\end{equation*}
$$

Averaging Systems

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric

$$
\begin{equation*}
x(k+1)=A^{(k+1)} x(0)=P J^{k+1} P^{-1} x(0) \tag{14}
\end{equation*}
$$

- Transformation

$$
\begin{aligned}
J & =\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right] \\
\Rightarrow J^{k+1} & =\left[\begin{array}{ccc}
\lambda_{1}^{k+1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{k+1}
\end{array}\right]
\end{aligned}
$$

Averaging Systems

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Take limitations on both sides of the equation

$$
\begin{align*}
\lim _{k \rightarrow \infty} x(k+1) & =\lim _{k \rightarrow \infty} P J^{k+1} P^{-1} x(0) \\
& =\lim _{k \rightarrow \infty} P\left[\begin{array}{ccc}
\lambda_{1}^{k+1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{k+1}
\end{array}\right] P^{-1} x(0) \\
& =P\left[\begin{array}{ccc}
\lim _{k \rightarrow \infty} \lambda_{1}^{k+1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lim _{k \rightarrow \infty} \lambda_{n}^{k+1}
\end{array}\right] P^{-1} x(0) \tag{15}
\end{align*}
$$

Averaging Systems

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Take limitations on both sides of the equation

$$
\begin{align*}
\lim _{k \rightarrow \infty} x(k+1) & =\lim _{k \rightarrow \infty} P J^{k+1} P^{-1} x(0) \\
& =\lim _{k \rightarrow \infty} P\left[\begin{array}{ccc}
\lambda_{1}^{k+1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{k+1}
\end{array}\right] P^{-1} x(0) \\
& =P\left[\begin{array}{ccc}
\lim _{k \rightarrow \infty} \lambda_{1}^{k+1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lim _{k \rightarrow \infty} \lambda_{n}^{k+1}
\end{array}\right] P^{-1} x(0) \tag{15}
\end{align*}
$$

- Consensus is correlated to the eigenvalues of the matrix A
- Limitation exists if $\lim _{k \rightarrow \infty} \lambda_{i}^{k+1}$ exists, i.e., $\lambda_{i} \leq 1$

Connectivity of the Associated Graph

- The power of matrix A

$$
A^{2}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \tag{16}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]=\left[\begin{array}{cccc}
0.3750 & 0.3750 & 0.1250 & 0.1250 \\
0.1875 & 0.3542 & 0.2292 & 0.2292 \\
0.0833 & 0.3056 & 0.3056 & 0.30560 \\
0.0833 & 0.3056 & 0.3056 & 0.3056
\end{array}\right]
$$

Connectivity of the Associated Graph

- The power of matrix A

$$
A^{2}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \tag{16}\\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]=\left[\begin{array}{cccc}
0.3750 & 0.3750 & 0.1250 & 0.1250 \\
0.1875 & 0.3542 & 0.2292 & 0.2292 \\
0.0833 & 0.3056 & 0.3056 & 0.30560 \\
0.0833 & 0.3056 & 0.3056 & 0.3056
\end{array}\right]
$$

Figure 6: The original communication graph and the weighted graph

Connectivity of the Associated Graph

- The power of matrix A
- Nonzero elements of A^{2} : the directed path with a length of 2 in the associated graph
$\left[A^{2}\right]_{i j}>0$, there is a directed path between node i and node j
- The information flow between different nodes
$\left[A^{2}\right]_{i j}>0$, node i can obtain the information of node j through two hops interaction

Row-stochastic matrices and their spectral radius

- For any row-stochastic matrix $A \in \mathbb{R}^{n \times n}$

1) 1 is an eigenvalue \Leftarrow definition $A 1_{n}=1_{n}$
2) $\operatorname{spec}(A)$ is a subset of the unit disk and $\rho(A)=1$

- Gershgorin Disk Theorem

Theorem

For any square matrix $A \in \mathbb{R}^{n \times n}$,

$$
\begin{equation*}
\operatorname{spec}(A) \subset \cup_{i=\{1, \cdots, n\}}\left\{z| | z-a_{i i}\left|\leq \sum_{j=1, j \neq i}^{n}\right| a_{i j} \mid\right\} \tag{17}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& A x=\lambda x, x \neq 0,\left|x_{i}\right|=\max _{j\{1, \cdots, n\}}\left|x_{j}\right|>0 \Rightarrow \lambda x_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \\
& \Rightarrow \lambda-a_{i i}=\sum_{j=1, j \neq i}^{n} a_{i j} x_{j} / x_{i} \\
& \Rightarrow\left|\lambda-a_{i i}\right|=\left|\sum_{j=1, j \neq i}^{n} a_{i j} x_{j} / x_{i}\right| \leq \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|\left|x_{j}\right| /\left|x_{i}\right| \leq \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Perron-Frobenius Theory

- Irreducible and primitive matrices
- $A \in \mathbb{R}^{n \times n}, n \geq 2$ has non-negative entries and is
- irreducible if $\sum_{k=0}^{n-1} A^{k}>0$ (G is strongly connected)
- primitive if there exists a positive integer k such that $A^{k}>0$ (G is strongly connected and aperiodic)
- a primitive matrix is irreducible

Figure 7: The set of non-negative square matrices and its subsets of irreducible, primitive and positive matrices

Perron-Frobenius Theory

- Irreducible and primitive matrices

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{l}
: \operatorname{spec}\left(A_{1}\right)=\{1,1\}, \text { the zero/nonzero pattern in } A_{1}^{k} \text { is constant, and } \\
\lim _{k \rightarrow \infty} A_{1}^{k}=I_{2},
\end{array} \\
& A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad: \operatorname{spec}\left(A_{2}\right)=\{1,-1\} \text {, the zero/nonzero pattern in } A_{2}^{k} \text { is periodic, and } \\
& \lim _{k \rightarrow \infty} A_{2}^{k} \text { does not exist, } \\
& A_{3}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& A_{4}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
1 & 0
\end{array}\right] \\
& \begin{array}{l}
: \operatorname{spec}\left(A_{3}\right)=\{0,0\} \\
\lim _{k \rightarrow \infty} A_{3}^{k}=0,
\end{array} \\
& \lim _{k \rightarrow \infty} A_{3}=0 \text {, } \\
& : \operatorname{spec}\left(A_{4}\right)=\{1,-1 / 2\} \text {, the zero/nonzero pattern is } A_{4}^{k}>0 \text { for all } k \geq 2 \text {, } \\
& \text { and } \lim _{k \rightarrow \infty} A_{4}^{k}=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \text {, and } \\
& A_{5}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \begin{array}{l}
: \operatorname{spec}\left(A_{5}\right)=\{1,1\}, \text { the zero/nonzero pattern in } A_{5}^{k} \text { is constant and } \\
\lim _{k \rightarrow \infty} A_{5}^{k} \text { is unbounded. }
\end{array}
\end{aligned}
$$

Figure 8: Example 2-dimensional non-negative matrices and their properties

Perron-Frobenius Theory

- Perron-Frobenius Theorem

Theorem

Let $A \in \mathbb{R}^{n \times n}, n \geq 2$. If A is non-negative, then

1) there exists a real eigenvalue $\lambda \geq|\mu| \geq 0$ for all other eigenvalues μ;
2) the right and left eigenvectors v and w of λ can be selected non-negative.

If additionally A is irreducible, then
3) the eigenvalue λ is strictly positive and simple;
4) the right and left eigenvectors v and w of λ are unique and positive.

If additionally A is primitive, then
5) the eigenvalue $\lambda>|\mu|$ for all other eigenvalues μ

- Proof: analyze properties of positive matrices and then use "limit"

Perron-Frobenius Theory

- Lemma for positive matrices

Lemma

Let $A \in \mathbb{R}^{n \times n}, n \geq 2$. If A is positive, then
Lem-1) there exists an eigenvalue $\lambda=\rho(A)>|\mu| \geq 0$ for all other eigenvalues μ; Lem-2) λ is simple, i.e., algmulti ${ }_{A}(\lambda)=1$;
Lem-3) the right and left eigenvectors v and w of λ are positive.

- Proof is omitted and can be found in the reference below
- $\rho(A)$ is the only one eigenvalue on the spectral circle
- Algebraic and geometric multiples are equal to 1

圊
C. D. Meyer, "Matrix analysis and applied linear algebra," SIAM, 2000.

Perron-Frobenius Theory

- Proof of 1) and 2) of non-negative matrix A
- Key idea: positive matrices \Rightarrow sequence convergence
- Construct a positive matrix $A_{k}=A+(1 / k) 1_{n} 1_{n}^{\top}$ $\Rightarrow A_{k}>0$ and let $\left(r_{k}, p_{k}\right)\left(r_{k}=\rho\left(A_{k}\right), p_{k}>0,\left\|p_{k}\right\|=1\right)$ eigenpair $\Rightarrow\left\{p_{k}\right\}_{k=1}^{\infty}$ is a bounded set as contained in the unit 1 -sphere in \mathbb{R}^{n}
- Convergence: each bounded sequence in \mathbb{R}^{n} has a convergent subsequence
$\Rightarrow\left\{p_{k}\right\}_{k=1}^{\infty}$ has a convergent subsequence, $p_{k_{i}}>0$ and $\left\|p_{k_{i}}\right\|=1$
$\Rightarrow\left\{p_{k_{i}}\right\}_{k_{i}=1}^{\infty} \rightarrow z$ where $z \geq 0$
- Take limitations: $r_{k}=\lim _{t \rightarrow \infty}\left\|A_{k}^{t}\right\|^{1 / t} \Rightarrow 0 \leq A<A_{1}, \rho(A) \leq \rho\left(A_{1}\right)$ $\Rightarrow A_{1}>A_{2}>\cdots>A \Rightarrow r_{1}>r_{2}>\cdots>r(r=\rho(A)),\left\{r_{k}\right\}_{k=1}^{\infty}$ is a monotonic sequence of positive numbers bounded by r $\Rightarrow \lim _{k \rightarrow \infty} r_{k}=r^{*}$ exists and $r^{*} \geq r, \lim _{k_{i} \rightarrow \infty} r_{k_{i}}=r^{*} \geq r$
$\Rightarrow \lim _{k \rightarrow \infty} A_{k}=A$ implies $\lim _{k_{i} \rightarrow \infty} A_{k_{i}}=A$
$\Rightarrow A z=\lim _{k_{i} \rightarrow \infty} A_{k_{i}} p_{k_{i}}=\lim _{i \rightarrow \infty} r_{k_{i}} p_{k_{i}}=r^{*} z \Rightarrow r^{*} \in \operatorname{spec}(A) \Rightarrow r^{*} \leq r$
$\Rightarrow r^{*}=r$ and $A z=r z$ with $z \geq 0$ and $z \neq 0$

Perron-Frobenius Theory

- Proof of 3) and 4) for irreducible matrices
- $\rho(A)$ is simple: $r=\rho(A)$, let $B=(I+A)^{n-1}>0$ and $\nu=\rho(B)$ $\Rightarrow \lambda \in \operatorname{spec}(A) \Leftrightarrow(1+\lambda)^{n-1} \in \operatorname{spec}(B)$,
$\operatorname{algmulti}_{A}(\lambda)=\operatorname{algmulti}_{B}\left((1+\lambda)^{n-1}\right)$
$\Rightarrow \nu=\max _{\lambda \in \operatorname{spec}(A)}|1+\lambda|^{n-1}=\left\{\max _{\lambda \in \operatorname{spec}(A)}|1+\lambda|\right\}^{n-1}=(1+r)^{n-1}$
$\Rightarrow \operatorname{algmulti}_{A}(r)=1 \Leftrightarrow \operatorname{algmulti}_{B}(\nu)=1$.
- Positive eigenvector: (r, x) is eigenpair of $A \Leftrightarrow(\nu, x)$ is eigenpair of B $\Rightarrow x>0$
$\Rightarrow r>0$; otherwise $A x=0$ impossible $\Leftarrow A \geq 0, x>0 \Rightarrow A x>0$

Perron-Frobenius Theory

- Proof of 5)
- By definition of primitive matrix

$$
B=A^{k}>0 \Rightarrow \lambda \in \operatorname{spec}(A) \Leftrightarrow \lambda^{k} \in \operatorname{spec}(B)
$$

- Suppose $\left|\lambda_{1}\right|=1$ and $\lambda_{1} \neq \rho(A) \Rightarrow \lambda_{1}^{k} \in \operatorname{spec}(B)$
$\Rightarrow\left|\lambda_{1}^{k}\right|=1$ and $\operatorname{spec}(B)$ has two eigenvalues on the spectral circle contradict with the result for positive matrix only one eigenvalue $\rho(A)$ on the spectral circle
- \Rightarrow eigenvalue $\rho(A)>|\mu|$ for all other eigenvalues μ

Perron-Frobenius Theory-Perron

- Frobenius Theorem
- $A_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A_{3}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], A_{4}=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right]$

(a) The matrix A_{3} is reducible: its dominant eigenvalue is 0 and so is its other eigenvalue.

(b) The matrix A_{2} is irreducible but not primitive: its dominant eigenvalues +1 is not strictly larger, in magnitude, than the other eigenvalue -1 .

(c) The matrix A_{4} is primitive: its dominant eigenvalue +1 is strictly larger than the other eigenvalue $-1 / 2$.

Figure 9: Example 2-dimensional non-negative matrices and their properties

Perron-Frobenius Theory

- Powers of non-negative matrices

Theorem

Let $A \in \mathbb{R}^{n \times n}, n \geq 2$ be non-negative with dominant eigenvalue λ and the right and left eigenvectors are denoted by v and w of $\lambda, v^{\top} w=1$. If λ is simple and strictly larger in magnitude than all other eigenvalues, then we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{A^{k}}{\lambda^{k}}=v w^{\top} \tag{18}
\end{equation*}
$$

Proof.

λ is simple and strictly larger $\Rightarrow A=T\left[\begin{array}{cc}\lambda & 0_{1 \times n-1} \\ 0_{n-1 \times 1} & B\end{array}\right] T^{-1}$ and $\rho(B / \lambda)<1$
$\Rightarrow \lim _{k \Rightarrow \infty} B^{k} / \lambda^{k}=0 \Rightarrow \lim _{k \rightarrow \infty}\left(\frac{A}{\lambda}\right)^{k}=T\left(\lim _{k \Rightarrow \infty}\left[\begin{array}{cc}1^{k} & 0_{1 \times n-1} \\ 0_{n-1 \times 1} & B^{k}\end{array}\right]\right) T^{-1}=$
$T\left(\lim _{k \rightarrow \infty}\left[\begin{array}{cc}1 & 0_{1 \times n-1} \\ 0_{n-1 \times 1} & 0_{n-1 \times n-1}\end{array}\right]\right) T^{-1}=v w^{\top}, v$ is the first column of T and w is the first row of T^{-1}.

Consensus

- Row-stochastic matrices (Let A be a row-stochastic matrix and let G be its associated digraph)
- the eigenvalue 1 is simple and all other eigenvalues $|\mu|<1$
- $\lim _{k \rightarrow \infty} A^{k}=1_{n} w^{\top}$ for $w>0$ and $1_{n}^{\top} w=1$
- G is an aperiodic strongly-connected graph

Consensus

- Row-stochastic matrices (Let A be a row-stochastic matrix and let G be its associated digraph)
- the eigenvalue 1 is simple and all other eigenvalues $|\mu|<1$
- $\lim _{k \rightarrow \infty} A^{k}=1_{n} w^{\top}$ for $w>0$ and $1_{n}^{\top} w=1$
- G is an aperiodic strongly-connected graph
- If the previous conditions are satisfied, then
- the solution of $x(k+1)=A x(k)$ satisfies $\lim _{k \Rightarrow \infty} x(k)=w^{\top} x(0) 1_{n}$
- if additionally A is doubly-stochastic, then $w=\frac{1}{n} 1_{n}$ so that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x(k)=\frac{1_{n}^{\top} x(0)}{n} 1_{n}=\operatorname{average}(x(0)) 1_{n} \tag{19}
\end{equation*}
$$

Summary

- Discrete-time averaging systems
- Background and application examples
- Analysis intuition for convergence (consensus)
- Conditions to ensure consensus and average consensus
- References
F. Bullo, "Lectures on network systems," Kindle Direct Publishing, 2019.
C. Godsil, G. F. Royle, "Algebraic graph theory," Springer Science \& Business Media, 2013.
C. D. Meyer, "Matrix analysis and applied linear algebra," SIAM, 2000.
R. Olfati-Saber, J. A. Fax, and R. M. Murray. "Consensus and cooperation in networked multi-agent systems," Proceedings of the IEEE, 95(1): 215-233, 2007.
R. Olfati-Saber and R. M. Murray, "Consensus problems in networks of agents with switching topology and time-delays," IEEE Transactions on Automatic Control, 49(9): 1520-1533, 2004.

Q\&A

Thank You!

Q\&A

