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(a) Bird flocking (b) Ant swarming (c) Fish Swarming
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@ Swarm behaviour in nature

(d) Bird flocking (e) Ant swarming (f) Fish Swarming

e No control center
e Individual animals only interact with their neighbours
o Collective animal behavior

How can we use the idea behind in social and engineering fields?
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Background

@ Consensus algorithms

o Average consensus: all states converges to average
e Maximum consensus: all states converge to maximum value

@ Wide application
e Smart grids, VANETS, social networks, and crowd-sensing

o _..o.:

Figure 1. Wide applications
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@ Consensus algorithms

o Average consensus: all states converges to average
e Maximum consensus: all states converge to maximum value

@ Wide application
e Smart grids, VANETS, social networks, and crowd-sensing

Figure 1. Wide applications

Two application examples to show the related averaging systems
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Application Examples

Figure 2: Interactions in a social influence network
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Application Examples

Figure 2: Interactions in a social influence network

@ Social influence networks: opinion dynamics
e A group of n individuals who must act together as a team
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Application Examples

Figure 2: Interactions in a social influence network

@ Social influence networks: opinion dynamics
e A group of n individuals who must act together as a team
e Each individual has its own subjective estimate p; for the unknown
parameters

C. Zhao (ZJU) Discrete-time Averaging Systems August 2, 2021



Application Examples

Figure 2: Interactions in a social influence network

@ Social influence networks: opinion dynamics

e A group of n individuals who must act together as a team

e Each individual has its own subjective estimate p; for the unknown
parameters

e Individual i is appraised of p; of each other member j # i of the group
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Application Examples

Figure 2: Interactions in a social influence network

@ Social influence networks: opinion dynamics

e A group of n individuals who must act together as a team

e Each individual has its own subjective estimate p; for the unknown
parameters

e Individual i is appraised of p; of each other member j # i of the group

o How to model predictions that the individual will revise its estimate?
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Application Examples

@ Social influence networks: opinion dynamics

e The model (French-Harary-DeGroot) predicts that the individual will
revise its estimate to be

i(k+1) Z a;;p;(k (1)
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Application Examples

@ Social influence networks: opinion dynamics

e The model (French-Harary-DeGroot) predicts that the individual will
revise its estimate to be

i(k+1) Z a;;p;(k (1)

@ a;; > 0 denotes the weight that individual ¢ assigns to individual j;
n
@ > a;; =1 forall 4
=1
@ a;; describes the attachment of individual i to its own opinion;
@ a; is an interpersonal influence weight that individual ¢ accords to
individual 7;
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Application Examples

@ Social influence networks: opinion dynamics
e Scientific questions of interests

@ Is this model of human opinion dynamics believable?
Is there empirical evidence in its support?
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Application Examples

@ Social influence networks: opinion dynamics
e Scientific questions of interests
@ Is this model of human opinion dynamics believable?
Is there empirical evidence in its support?
@ How does one measure the coefficients a;;?
@ Under what conditions do the estimate converge to the same estimate?
And to what final estimate?
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Application Examples

@ Social influence networks: opinion dynamics
e Scientific questions of interests
@ Is this model of human opinion dynamics believable?
Is there empirical evidence in its support?

@ How does one measure the coefficients a;;?
@ Under what conditions do the estimate converge to the same estimate?

And to what final estimate?
@ What are more realistic, empirically-motivated models, possibly
including stubborn individuals or antagonistic interactions?

August 2, 2021 6 /32
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Application Examples

sensor node

I[j'l gateway node

@ Wireless sensor networks
@ A collection of spatially-distributed devices
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Application Examples

lﬁ sensor node
I[j'l gateway node

@ Wireless sensor networks
@ A collection of spatially-distributed devices
e Measure physical and environmental variables (e.g., temperature,
vibrations, sound, light, etc)
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Application Examples

1 lij sensor node
I[j'l gateway node

@ Wireless sensor networks
@ A collection of spatially-distributed devices
e Measure physical and environmental variables (e.g., temperature,
vibrations, sound, light, etc)
e Perform local computations, and transmit information to neighboring
device throughout the network
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Application Examples

1 lij sensor node
I[j'l gateway node

@ Wireless sensor networks
@ A collection of spatially-distributed devices
e Measure physical and environmental variables (e.g., temperature,
vibrations, sound, light, etc)
e Perform local computations, and transmit information to neighboring
device throughout the network

How can all devices obtain the accurate estimate in a distributed way?
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Application Examples

Figure 3: The communication graph for devices

@ Wireless sensor networks: linear averaging
o Each node has a measured temperature z;(0)
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Application Examples

Figure 3: The communication graph for devices

@ Wireless sensor networks: linear averaging

o Each node has a measured temperature z;(0)
o Apply the following linear averaging algorithm (Algorithm 1)
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Application Examples

Figure 3: The communication graph for devices

@ Wireless sensor networks: linear averaging
o Each node has a measured temperature z;(0)
o Apply the following linear averaging algorithm (Algorithm 1)

x;(k 4+ 1) = mean(z,(k), {z;(k)}), for all neighbors j 2)
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Application Examples

Figure 3: The communication graph for devices

@ Wireless sensor networks: linear averaging
o Each node has a measured temperature z;(0)
o Apply the following linear averaging algorithm (Algorithm 1)
x;(k 4+ 1) = mean(z,(k), {z;(k)}), for all neighbors j 2)

o x;(k+ 1) is the value at iteration k, update example:
z1(k+1) =z1(k)/2 4+ z2(k)/2
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Application Examples

Figure 3: The communication graph for devices

@ Wireless sensor networks: linear averaging
o Each node has a measured temperature z;(0)
o Apply the following linear averaging algorithm (Algorithm 1)
x;(k 4+ 1) = mean(z,(k), {z;(k)}), for all neighbors j 2)
o x;(k+ 1) is the value at iteration k, update example:
w1(k+ 1) = 21(k)/2 + z2(k) /2
e update rule z(k + 1) = Az (k)

z1(k+1) 1/2 1/2 0 0 z1(k)
za(k+1)| _ |1/4 1/4 1/4 1/4| |z2(k) 3)
zs(k+1)| — | 0 1/3 1/3 1/3| |z3(k)
za(k + 1) 0 1/3 1/3 1/3] |za(k)
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Application Examples

o Apply Algorithm 1

z1(k+1) 12 12 0 07 [zi(k)
wo(k+1)| _ |1/4 174 1/4 1/4| |za(k) @
zs(k+1)| — | 0 1/3 1/3 1/3| |as(k)
za(k +1) 0 1/3 1/3 1/3| |zu(k)
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Application Examples

o Apply Algorithm 1
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Figure 4. The original communication graph and the weighted graph
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Application Examples

o Apply Algorithm 1

) 12 12 0 07 [a(k)
k)| |14 174 14 17| |zek) ;
wsk+ )| =10 13 173 13| |zs(k) ()
(k+ 1) 0 13 173 1/3] |ea(k)
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Application Examples

o Apply Algorithm 1

z1(k+1) 1/2 1/2 0 0 z1(k)
zo(k+1)|  (1/4 1/4 1/4 1/4| |z2(k) 5)
zs(k+1)| | 0 1/3 1/3 1/3| |zs(k)
za(k + 1) 0 1/3 1/3 1/3] |za(k)
28 —
(k)
26 z3(k)
— (k)

20
5 10 15 20

As the average is 24, average consensus cannot be achieved.
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Application Examples

e Apply a new weight strategy (Algorithm 2)

z1(k+1) 3/4 1/4 0 0 z1(k)
x2(k+1)|  |1/4 1/4 1/4  1/4| |x2(k) 6)
s+ )| =0 174 5/12 173 | |2s(k)
za(k +1) 0 1/4 1/3 5/12] |za(k)
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Application Examples

e Apply a new weight strategy (Algorithm 2)

z1(k+1) 3/4

x2(k+1)| _ |1/4
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Figure 5: The original communication graph and the weighted graph
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Application Examples

e Apply a new weight strategy (Algorithm 2)

z1(k+1) 3/4 1/4 0 0 7 [z:(k)
zo(k+1)| |14 174 1/4  1/4 | |za(k) @)
zs(k+1)| ~ | 0 1/4 5/12 1/3| |as(k)
za(k+1) 0 1/4 1/3 5/12] |za(k)
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Application Examples

e Apply a new weight strategy (Algorithm 2)

21 (k +1) 3/4 1/4 0 0 7 [z1(k)
ok +1)|  |1/4 174 1/4  1/4 | |xa(k) @)
w3(k+1)| ~ | 0 1/4 5/12 1/3| |as(k)
za(k+1) 0 1/4 1/3 5/12| |za(k)
28
— (k)
—a3(k)
26 f\ (k)
—aq(k)
§24
8 raverage consensus’
{2(1) = [25 20 24 27]}
22
20
5 10 15 20
k

As the average is 24, average consensus can be achieved.
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Application Examples

@ Interesting findings

3/4  1/4 0 0 1/2 1/2 0 0
A |1/4 /4 1/a /4l |1/4 1/4 1/4 1/4 ®)
“lo 174 s/12 1/3|°%T |0 1/3 1/3 1/3
0o 1/4 1/3 5/12 o 1/3 1/3 1/3

e A is a non-negative matrix
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Application Examples

@ Interesting findings

3/4  1/4 0 0 1/2 1/2 0 0
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e A is a non-negative matrix
e A is a row stochastic matrix
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Application Examples

@ Interesting findings

3/4  1/4 0 0 1/2 1/2 0 0
A |1/4 /4 1/a /4l |1/4 1/4 1/4 1/4 ®)
“lo 174 s/12 1/3|°%T |0 1/3 1/3 1/3
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e A is a non-negative matrix
e A is a row stochastic matrix
e The associated graph of A is strongly connected
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Application Examples

@ Interesting findings

3/4  1/4 0 0 1/2 1/2 0 0
A |1/4 /4 1/a /4l |1/4 1/4 1/4 1/4 ®)
“lo 174 s/12 1/3|°%T |0 1/3 1/3 1/3
0o 1/4 1/3 5/12 o 1/3 1/3 1/3

A is a non-negative matrix

A is a row stochastic matrix

The associated graph of A is strongly connected
When can we achieve average consensus?
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Application Examples

@ Interesting findings

3/4  1/4 0 0 1/2 1/2 0 0
A |1/4 /4 1/a /4l |1/4 1/4 1/4 1/4 ®)
“lo 174 s/12 1/3|°%T |0 1/3 1/3 1/3
0o 1/4 1/3 5/12 o 1/3 1/3 1/3

A is a non-negative matrix

A is a row stochastic matrix

The associated graph of A is strongly connected
When can we achieve average consensus?

In Algorithm 2, A is symmetric
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Averaging Systems

@ Dynamic model
a(k+1) = Az (k) (9)
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Averaging Systems

@ Dynamic model

2(k + 1) = Az(k) (9)
air a2 -0 Gin x1(k)
a1 Q22 - Qln

A= gy = |2 W) (10)
an1 an2 e Ann xn(k)
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Averaging Systems

@ Dynamic model

z(k+1) = Az(k) (9)
ail  ai2 A1n xl(k)
az1 G222 -+ QAln

A= gy = |2 W) (10)
an1 an?2 o Ann xn(k)

e A € R™ ™ has non-negative entries and unit row sums

° x(k)ERn,k‘ZO
x;(0) is the initial scalar state (temperature, vibrations, sound, light)
x;(k) is the updated state at iteration k
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Averaging Systems

@ Dynamic model

z(k+1) = Az(k) (9)
ail  ai2 A1n xl(k)
az1 G222 -+ QAln

A= gy = |2 W) (10)
an1 an?2 o Ann xn(k)

e A € R™ ™ has non-negative entries and unit row sums
° SC(/C)ER",]CZO
x;(0) is the initial scalar state (temperature, vibrations, sound, light)
x;(k) is the updated state at iteration k
@ Interesting problems for the averaging model

o Does each node converge to a value?
Is this value the same for all nodes (consensus)?
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Averaging Systems

@ Dynamic model

z(k+1) = Az(k) (9)
ail  ai2 A1n xl(k)
az1 G222 -+ QAln

A= gy = |2 W) (10)
an1 an?2 o Ann xn(k)

e A € R™ ™ has non-negative entries and unit row sums

° SC(/C)ER",]CZO
x;(0) is the initial scalar state (temperature, vibrations, sound, light)
x;(k) is the updated state at iteration k

@ Interesting problems for the averaging model

o Does each node converge to a value?
Is this value the same for all nodes (consensus)?

o Is this value equal to the average of the initial conditions?
When do the agents achieve average consensus?
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Averaging Systems

@ Dynamic model

z(k+1) = Az(k) (9)
ail  ai2 A1n xl(k)
az1 G222 -+ QAln
A= gy = |2 W) (10)
an1 an?2 o Ann xn(k)

e A € R™ ™ has non-negative entries and unit row sums

° SC(/C)ER",]CZO
x;(0) is the initial scalar state (temperature, vibrations, sound, light)
x;(k) is the updated state at iteration k

@ Interesting problems for the averaging model
o Does each node converge to a value?
Is this value the same for all nodes (consensus)?
o Is this value equal to the average of the initial conditions?
When do the agents achieve average consensus?
o What properties do the graph and the corresponding matrix need to
have in order for the algorithm to converge?

August 2, 2021 14 / 32

C. Zhao (ZJU) Discrete-time Averaging Systems



Averaging Systems

@ Dynamic model
z(k+1) = Az(k) = z(k) = Az(k — 1)
=Ax Az(k—-1)
(11)

— A(k+1)x(0)
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Averaging Systems

@ Dynamic model
z(k+1) = Az(k) = z(k) = Az(k — 1)

=Ax Az(k—-1)
(11)
= A¥D(0)
@ Jordan normal form
A=PJP ' = 2(k+1)=A%Y20
z( ) z(0) (12)

= (PJP ) 2(0)
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Averaging Systems

@ Dynamic model
z(k+1) = Az(k) = z(k) = Az(k — 1)

=Ax Az(k—-1)
(11)
= A¥D(0)
@ Jordan normal form
A=PJP ' = 2(k+1)=A%Y20
z( ) z(0) (12)

= (PJP ) 2(0)

A*=pPJjP 'PJP ' =PJ*P!
A* =pjptPJP ... PP = PJF P! (13)
= z(k+1) = PJ*T P 2(0)
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Averaging Systems

@ Dynamic model
z(k+1) = Az(k) = z(k) = Az(k — 1)

=Ax Az(k—-1)
(11)
= A¥D(0)
@ Jordan normal form
A=PJP ' = 2(k+1)=A%Y20
z( ) z(0) (12)

= (PJP ) 2(0)
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Averaging Systems

@ Suppose A € R™*™ is symmetric
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Averaging Systems

@ Suppose A € R™*™ is symmetric

a(k+1) = A% 20) = PSP 12(0) (14)
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Averaging Systems

@ Suppose A € R™*™ is symmetric

a(k+1) = A% 20) = PSP 12(0) (14)
e Transformation

X - 0
J=1: :
0 An

PV 0

= Jk+1 _ . .

0 AL{“
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Averaging Systems

@ Suppose A € R™ " is symmetric
o Take limitations on both sides of the equation

lim z(k+1) = lim PJ*T P 12(0)
—00

k— oo
)\’fﬂ 0
= lim P o | Pa(0)
k— o0 .
0 pLan
15
lim A&t 0 (15)
k— o0
=P : P~ 'z(0)
0 lim M\et!
k— o0
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Averaging Systems

@ Suppose A € R™ " is symmetric
o Take limitations on both sides of the equation

lim z(k+1) = lim PJ*T P 12(0)
—00

k— o0
)\’fﬂ 0
= lim P : | P7a(0)
0 cee AR
15
lim AfT - 0 (15)
k— o0
=P : _ : P~ 'z(0)
0 coo lim ARTE
k— o0

o Consensus is correlated to the eigenvalues of the matrix A
@ Limitation exists if lim Af“ exists, i.e.,, \; <1
k—o0
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Connectivity of the Associated Graph

@ The power of matrix A

/2 1/2 0 ol /2 172 o 0 0.3750  0.3750 0.1250  0.1250
A2 |1/4 1/4 1/4 1/4| |1/4 1/4 1/4 1/4| _ |0.1875 0.3542 0.2292  0.2292
=|lo 13 1/3 1/3| |0 1/3 1/3 1/3| = |0.0833 0.3056 0.3056 0.30560
o 1/3 1/3 1/3] |0 1/3 1/3 1/3 0.0833  0.3056 0.3056  0.3056

(16)
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Connectivity of the Associated Graph

@ The power of matrix A

/2 1/2 0 ol /2 172 o 0 0.3750  0.3750 0.1250  0.1250
A2 |1/4 1/4 1/4 1/4| |1/4 1/4 1/4 1/4| _ |0.1875 0.3542 0.2292  0.2292
=|lo 1/3 1/3 1/3 1/3 1/3 1/3| = |0.0833 0.3056 0.3056  0.30560
o 1/3 1/3 1/3 1/3 1/3  1/3 0.0833  0.3056 0.3056  0.3056

(16)

(a) (b)

Figure 6: The original communication graph and the weighted graph

C. Zhao (ZJU) Discrete-time Averaging Systems August 2, 2021



Connectivity of the Associated Graph

@ The power of matrix A
o Nonzero elements of A2%: the directed path with a length of 2 in the
associated graph
[A2];; > 0, there is a directed path between node i and node j
e The information flow between different nodes
[A2];; > 0, node i can obtain the information of node j through two
hops interaction
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Row-stochastic matrices and their spectral radius

@ For any row-stochastic matrix A € R™"*"

1) 1 is an eigenvalue < definition Al, =1,

2) spec(A) is a subset of the unit disk and p(A) =1
@ Gershgorin Disk Theorem

For any square matrix A € R"*",

spec(A) C Uim1,... ny{2l]2 — aii| < Z |lai;|} (17)
J=1,j#i

v

Proof.

n
Az =Xz,  # On, |zi| = max;(1,... ny 25| >0 =2z = Y aijz;
j=1

n
= \A—ay = Z a”-x]-/xi

j=1,j#1
n n n
= A—aul=| X ayzij/al < Y agllzl/|el <Y agl O
j=1,j#i j=1,j#i J=1,j#1

v
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Perron-Frobenius Theory

@ Irreducible and primitive matrices
e A € R"™™ n > 2 has non-negative entries and is

n—1
o irreducible if 3" A* > 0 (G is strongly connected)
k=0

o primitive if there exists a positive integer k such that A* >0
(G is strongly connected and aperiodic)
@ a primitive matrix is irreducible

non-negative irreducible primitive
(A>0) (E:;é Ak > 0) (there exists k
such that A% > 0)

Figure 7: The set of non-negative square matrices and its subsets of irreducible,
primitive and positive matrices
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Perron-Frobenius Theory

@ lrreducible and primitive matrices

—

= o
S =
e = e =

: spec(Ay) = {1.1}, the zero/nonzero pattern in 4’1 is constant, and
: B
limg 00 A7 = I,

(=}
—_

: spec(As) = {1,—1}, the zero/nonzero pattern in A% is periodic, and
limy oo —1’_5 does not exist,

: spec(Az) = {0,0}, the zero/nonzero pattern is A5 = 0 for all & > 2, and

=
I

= —— == ===
"

y 01 limg ses:A% = 0
4 L
Ay = I) (—’}] : spec(Ay) = {1, —1/2}, the zero/nonzero pattern is A5 > 0 for all k > 2,
. 3 2 1
and limy_, o0 »ﬂ :% 21 ,and
As = (l) ﬂ : spec(A4s) = {1,1}, the zero/nonzero pattern in A% is constant and

limg 00 4@ is unbounded.

Figure 8: Example 2-dimensional non-negative matrices and their properties
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Perron-Frobenius Theory

@ Perron-Frobenius Theorem

Theorem

Let A € R"*"™, n > 2. If A is non-negative, then

1) there exists a real eigenvalue X\ > |u| > 0 for all other eigenvalues pi;

2) the right and left eigenvectors v and w of A can be selected non-negative.
If additionally A is irreducible, then

3) the eigenvalue X is strictly positive and simple;

4) the right and left eigenvectors v and w of \ are unique and positive.

If additionally A is primitive, then

5) the eigenvalue X\ > |u| for all other eigenvalues

@ Proof: analyze properties of positive matrices and then use “limit”
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Perron-Frobenius Theory

@ Lemma for positive matrices

Let A€ R"*", n > 2. If A is positive, then

Lem-1) there exists an eigenvalue \ = p(A) > |u| > 0 for all other eigenvalues u;
Lem-2) X\ is simple, i.e., algmulti,(\) = 1;

Lem-3) the right and left eigenvectors v and w of A are positive.

@ Proof is omitted and can be found in the reference below
@ p(A) is the only one eigenvalue on the spectral circle

@ Algebraic and geometric multiples are equal to 1

@ C. D. Meyer, “Matrix analysis and applied linear algebra,” SIAM, 2000.
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Perron-Frobenius Theory

@ Proof of 1) and 2) of non-negative matrix A
o Key idea: positive matrices = sequence convergence

e Construct a positive matrix Ay = A+ (1/k)1,1,
= Ar >0 and let (r%,pr) (v = p(Ax), pr > 0, ||px|| = 1) eigenpair
= {pr},—, is a bounded set as contained in the unit 1-sphere in R"

o Convergence: each bounded sequence in R" has a convergent
subsequence
= {pr},—, has a convergent subsequence, px, > 0 and ||px,|| = 1
= {pk;}5,=1 — = where 2 >0

o Take limitations: 5, = lim ALY = 0< A< Ay, p(A) < p(Ar)

> A1>A > >A=>ri>re> > (r=p(A4), {re}iz, is a
monotonic sequence of positive numbers bounded by r
= lim rp =7r" existsand r* >r, lim 7, =7 >7r
k—o0 ki—o0
= lim Ap = A implies lim Ay, = A
k=00 ki =00
= Az = lim Ag,pr, = lim ry,pr, =772 = r* € spec(A) = r* <r
k;—o0 i—00

=r*=rand Az=rzwithz>0and 2 £20
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Perron-Frobenius Theory

@ Proof of 3) and 4) for irreducible matrices
o p(A)issimple: 7 = p(A), let B=(I+ A)"! >0and v =p(B)
= )\ € spec(A) & (1 + )"~ € spec(B),
algmulti 4 (\) = algmultig ((1 4+ A)"71)

=v= max |[I+AN"'={ max [1+A}"1=(1+r)""!
A€Espec(A) A€spec(A)

= algmulti, (r) =1 & algmultiz(v) = 1.

e Positive eigenvector: (r,x) is eigenpair of A < (v, x) is eigenpair of B
=z>0
= r > 0; otherwise Az = 0 impossible < A >0, x>0= Az >0
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Perron-Frobenius Theory

@ Proof of 5)
o By definition of primitive matrix
B = AF >0 = ) € spec(4) & \! € spec(B)
o Suppose |[A\1]| =1 and A1 # p(A) = A} € spec(B)
= |A¥| = 1 and spec(B) has two eigenvalues on the spectral circle
contradict with the result for positive matrix
only one eigenvalue p(A) on the spectral circle

o = eigenvalue p(A) > |p for all other eigenvalues p
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Perron-Frobenius Theory-Perron

@ Frobenius Theorem

0 1 0 1 1/2 1/2
o dp=1y ol As=1y (| A= { (/)

A=0 Y. J'F § 3
=2 A=/l . —ip A=i1
(a) The matrix A3 is reducible: its (b) The matrix As is irreducible but not primitive: (c) The matrix Ay is primitive: its
dominant eigenvalue is 0 and so is its dominant eigenvalues +1 is not strictly larger, dominant eigenvalue +1 is strictly
its other eigenvalue. in magnitude, than the other eigenvalue —1. larger than the other eigenvalue
-1/2.

Figure 9: Example 2-dimensional non-negative matrices and their properties
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Perron-Frobenius Theory

@ Powers of non-negative matrices

Let A € R"*", n > 2 be non-negative with dominant eigenvalue X and the right and
left eigenvectors are denoted by v and w of A, v w = 1. If X is simple and strictly larger
in magnitude than all other eigenvalues, then we have

. AF
klilgo Ui ow’ (18)

Proof.

A O1xn—1

-
O s B T7" and p(B/)) <1

|

A is simple and strictly larger == A =T {

¥ Oixn-
. k vk _ o (AVK _ . Ixn—1|ym—1 _
:>kli>n;oB o) —O:kl;m(k) T(hm[ })T

oo k=00 0n—l><1 Bk

T( lim ! O1xn-1 YT~ =ww’, v is the first column of T and w is the first
k=00 |On—1x1  On—1xn-1
row of T71. O

v
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Consensus

@ Row-stochastic matrices (Let A be a row-stochastic matrix and let G
be its associated digraph)

o the eigenvalue 1 is simple and all other eigenvalues |u| < 1
o lim A*=1,w" forw>0and 1Jw=1

k:_).“> . .
e (G is an aperiodic strongly-connected graph
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Consensus

@ Row-stochastic matrices (Let A be a row-stochastic matrix and let G
be its associated digraph)

o the eigenvalue 1 is simple and all other eigenvalues |u| < 1

o lim A*=1,w" forw>0and 1Jw=1
k—o0
e (G is an aperiodic strongly-connected graph

@ If the previous conditions are satisfied, then
o the solution of x(k + 1) = Ax(k) satisfies klim z(k) = w'z(0)1,
=00
e if additionally A is doubly-stochastic, then w = %ln so that
1, 2(0)

lim z(k) =

k—o0 n

1,, = average(z(0))1, (19)
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Summary

@ Discrete-time averaging systems

e Background and application examples

o Analysis intuition for convergence (consensus)

e Conditions to ensure consensus and average consensus
@ References

F. Bullo, “Lectures on network systems,” Kindle Direct Publishing, 2019.
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R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and cooperation in networked multi-agent systems,”
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Thank You!
Q&A
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