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Background

Swarm behaviour in nature

(a) Bird flocking (b) Ant swarming (c) Fish Swarming

No control center
Individual animals only interact with their neighbours
Collective animal behavior

How can we use the idea behind in social and engineering fields?
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Background

Consensus algorithms

Average consensus: all states converges to average
Maximum consensus: all states converge to maximum value

Wide application

Smart grids, VANETS, social networks, and crowd-sensing

Figure 1: Wide applications

Two application examples to show the related averaging systems
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Application Examples

Figure 2: Interactions in a social influence network

Social influence networks: opinion dynamics

A group of n individuals who must act together as a team
Each individual has its own subjective estimate pi for the unknown
parameters
Individual i is appraised of pi of each other member j 6= i of the group
How to model predictions that the individual will revise its estimate?
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Application Examples

Social influence networks: opinion dynamics

The model (French-Harary-DeGroot) predicts that the individual will
revise its estimate to be

pi(k + 1) =

n∑
j=1

aijpj(k) (1)

aij ≥ 0 denotes the weight that individual i assigns to individual j;
n∑
j=1

aij = 1 for all i;

aii describes the attachment of individual i to its own opinion;
aij is an interpersonal influence weight that individual i accords to
individual j;
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Application Examples

Social influence networks: opinion dynamics
Scientific questions of interests

Is this model of human opinion dynamics believable?
Is there empirical evidence in its support?

How does one measure the coefficients aij?
Under what conditions do the estimate converge to the same estimate?
And to what final estimate?
What are more realistic, empirically-motivated models, possibly
including stubborn individuals or antagonistic interactions?
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Application Examples

Wireless sensor networks

A collection of spatially-distributed devices

Measure physical and environmental variables (e.g., temperature,
vibrations, sound, light, etc)
Perform local computations, and transmit information to neighboring
device throughout the network

How can all devices obtain the accurate estimate in a distributed way?
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Application Examples

Figure 3: The communication graph for devices

Wireless sensor networks: linear averaging

Each node has a measured temperature xi(0)

Apply the following linear averaging algorithm (Algorithm 1)

xi(k + 1) = mean(xi(k), {xj(k)}), for all neighbors j (2)

xi(k + 1) is the value at iteration k, update example:
x1(k + 1) = x1(k)/2 + x2(k)/2

update rule x(k + 1) = Ax(k)
x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3



x1(k)
x2(k)
x3(k)
x4(k)

 (3)
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Application Examples

Apply Algorithm 1
x1(k + 1)
x2(k + 1)
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x4(k + 1)

 =


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3



x1(k)
x2(k)
x3(k)
x4(k)

 (4)

(a) (b)

Figure 4: The original communication graph and the weighted graph
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As the average is 24, average consensus cannot be achieved.
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Application Examples

Interesting findings

A =


3/4 1/4 0 0
1/4 1/4 1/4 1/4
0 1/4 5/12 1/3
0 1/4 1/3 5/12

 , A =


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3

 (8)

A is a non-negative matrix

A is a row stochastic matrix
The associated graph of A is strongly connected
When can we achieve average consensus?
In Algorithm 2, A is symmetric
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Averaging Systems

Dynamic model
x(k + 1) = Ax(k) (9)

A =


a11 a12 · · · a1n
a21 a22 · · · a1n

...
...

. . .
...

an1 an2 · · · ann

 , x(k) =

x1(k)
x2(k)
· · ·
xn(k)

 (10)

A ∈ Rn×n has non-negative entries and unit row sums
x(k) ∈ Rn, k ≥ 0
xi(0) is the initial scalar state (temperature, vibrations, sound, light)
xi(k) is the updated state at iteration k

Interesting problems for the averaging model

Does each node converge to a value?
Is this value the same for all nodes (consensus)?
Is this value equal to the average of the initial conditions?
When do the agents achieve average consensus?
What properties do the graph and the corresponding matrix need to
have in order for the algorithm to converge?
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Is this value equal to the average of the initial conditions?
When do the agents achieve average consensus?
What properties do the graph and the corresponding matrix need to
have in order for the algorithm to converge?
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Averaging Systems

Dynamic model
x(k + 1) = Ax(k)⇒ x(k) = Ax(k − 1)

= A×Ax(k − 1)

=
...

= A(k+1)x(0)

(11)

Jordan normal form

A = PJP−1 ⇒ x(k + 1) = A(k+1)x(0)

= (PJP−1)k+1x(0)
(12)

A2 = PJP−1PJP−1 = PJ2P−1

Ak = PJP−1PJP−1 · · ·PJP−1 = PJkP−1

⇒ x(k + 1) = PJk+1P−1x(0)

(13)
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Averaging Systems

Suppose A ∈ Rn×n is symmetric

x(k + 1) = A(k+1)x(0) = PJk+1P−1x(0) (14)

Transformation

J =

λ1 · · · 0
...

. . .
...

0 · · · λn



⇒ Jk+1 =

λ
k+1
1 · · · 0
...

. . .
...

0 · · · λk+1
n


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Averaging Systems

Suppose A ∈ Rn×n is symmetric
Take limitations on both sides of the equation

lim
k→∞

x(k + 1) = lim
k→∞

PJk+1P−1x(0)

= lim
k→∞

P

λ
k+1
1 · · · 0
...

. . .
...

0 · · · λk+1
n

P−1x(0)

= P


lim
k→∞

λk+1
1 · · · 0

...
. . .

...
0 · · · lim

k→∞
λk+1
n

P−1x(0)

(15)

Consensus is correlated to the eigenvalues of the matrix A
Limitation exists if lim

k→∞
λk+1
i exists, i.e., λi ≤ 1
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Connectivity of the Associated Graph

The power of matrix A

A
2

=


1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3



1/2 1/2 0 0
1/4 1/4 1/4 1/4
0 1/3 1/3 1/3
0 1/3 1/3 1/3

 =


0.3750 0.3750 0.1250 0.1250
0.1875 0.3542 0.2292 0.2292
0.0833 0.3056 0.3056 0.30560
0.0833 0.3056 0.3056 0.3056


(16)

(c) (d)

Figure 6: The original communication graph and the weighted graph
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Connectivity of the Associated Graph

The power of matrix A

Nonzero elements of A2: the directed path with a length of 2 in the
associated graph
[A2]ij > 0, there is a directed path between node i and node j
The information flow between different nodes
[A2]ij > 0, node i can obtain the information of node j through two
hops interaction

C. Zhao (ZJU) Discrete-time Averaging Systems August 2, 2021 19 / 32



Row-stochastic matrices and their spectral radius

For any row-stochastic matrix A ∈ Rn×n

1) 1 is an eigenvalue ⇐ definition A1n = 1n
2) spec(A) is a subset of the unit disk and ρ(A) = 1
Gershgorin Disk Theorem

Theorem

For any square matrix A ∈ Rn×n,

spec(A) ⊂ ∪i={1,··· ,n}{z||z − aii| ≤
n∑

j=1,j 6=i

|aij |} (17)

Proof.

Ax = λx, x 6= 0n, |xi| = maxj{1,··· ,n} |xj | > 0 ⇒λxi =
n∑
j=1

aijxj

⇒ λ− aii =
n∑

j=1,j 6=i
aijxj/xi

⇒ |λ− aii| = |
n∑

j=1,j 6=i
aijxj/xi| ≤

n∑
j=1,j 6=i

|aij ||xj |/|xi| ≤
n∑

j=1,j 6=i
|aij |

C. Zhao (ZJU) Discrete-time Averaging Systems August 2, 2021 20 / 32



Perron-Frobenius Theory

Irreducible and primitive matrices
A ∈ Rn×n, n ≥ 2 has non-negative entries and is

irreducible if
n−1∑
k=0

Ak > 0 (G is strongly connected)

primitive if there exists a positive integer k such that Ak > 0
(G is strongly connected and aperiodic)
a primitive matrix is irreducible

Figure 7: The set of non-negative square matrices and its subsets of irreducible,
primitive and positive matrices
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Perron-Frobenius Theory

Irreducible and primitive matrices

Figure 8: Example 2-dimensional non-negative matrices and their properties
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Perron-Frobenius Theory

Perron-Frobenius Theorem

Theorem

Let A ∈ Rn×n, n ≥ 2. If A is non-negative, then
1) there exists a real eigenvalue λ ≥ |µ| ≥ 0 for all other eigenvalues µ;
2) the right and left eigenvectors v and w of λ can be selected non-negative.
If additionally A is irreducible, then
3) the eigenvalue λ is strictly positive and simple;
4) the right and left eigenvectors v and w of λ are unique and positive.
If additionally A is primitive, then
5) the eigenvalue λ > |µ| for all other eigenvalues µ

Proof: analyze properties of positive matrices and then use “limit”
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Perron-Frobenius Theory

Lemma for positive matrices

Lemma

Let A ∈ Rn×n, n ≥ 2. If A is positive, then
Lem-1) there exists an eigenvalue λ = ρ(A) > |µ| ≥ 0 for all other eigenvalues µ;
Lem-2) λ is simple, i.e., algmultiA(λ) = 1;
Lem-3) the right and left eigenvectors v and w of λ are positive.

Proof is omitted and can be found in the reference below

ρ(A) is the only one eigenvalue on the spectral circle

Algebraic and geometric multiples are equal to 1

C. D. Meyer, “Matrix analysis and applied linear algebra,” SIAM, 2000.
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Perron-Frobenius Theory

Proof of 1) and 2) of non-negative matrix A
Key idea: positive matrices ⇒ sequence convergence

Construct a positive matrix Ak = A+ (1/k)1n1
>
n

⇒ Ak > 0 and let (rk, pk) (rk = ρ(Ak), pk > 0, ‖pk‖ = 1) eigenpair
⇒ {pk}∞k=1 is a bounded set as contained in the unit 1-sphere in Rn
Convergence: each bounded sequence in Rn has a convergent
subsequence
⇒ {pk}∞k=1 has a convergent subsequence, pki > 0 and ‖pki‖ = 1
⇒ {pki}

∞
ki=1 → z where z ≥ 0

Take limitations: rk = lim
t→∞

‖Atk‖1/t ⇒ 0 ≤ A < A1, ρ(A) ≤ ρ(A1)

⇒ A1 > A2 > · · · > A ⇒ r1 > r2 > · · · > r (r = ρ(A)), {rk}∞k=1 is a
monotonic sequence of positive numbers bounded by r
⇒ lim

k→∞
rk = r∗ exists and r∗ ≥ r, lim

ki→∞
rki = r∗ ≥ r

⇒ lim
k→∞

Ak = A implies lim
ki→∞

Aki = A

⇒ Az = lim
ki→∞

Akipki = lim
i→∞

rkipki = r∗z ⇒ r∗ ∈ spec(A) ⇒ r∗ ≤ r

⇒ r∗ = r and Az = rz with z ≥ 0 and z 6= 0
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Perron-Frobenius Theory

Proof of 3) and 4) for irreducible matrices

ρ(A) is simple: r = ρ(A), let B = (I +A)n−1 > 0 and ν = ρ(B)
⇒ λ ∈ spec(A) ⇔ (1 + λ)n−1 ∈ spec(B),
algmultiA(λ) = algmultiB((1 + λ)n−1)
⇒ ν = max

λ∈spec(A)
|1 + λ|n−1 = { max

λ∈spec(A)
|1 + λ|}n−1 = (1 + r)n−1

⇒ algmultiA(r) = 1 ⇔ algmultiB(ν) = 1.
Positive eigenvector: (r, x) is eigenpair of A ⇔ (ν, x) is eigenpair of B
⇒ x > 0
⇒ r > 0; otherwise Ax = 0 impossible ⇐ A ≥ 0, x > 0 ⇒ Ax > 0
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Perron-Frobenius Theory

Proof of 5)

By definition of primitive matrix
B = Ak > 0 ⇒ λ ∈ spec(A) ⇔ λk ∈ spec(B)

Suppose |λ1| = 1 and λ1 6= ρ(A) ⇒ λk1 ∈ spec(B)
⇒ |λk1 | = 1 and spec(B) has two eigenvalues on the spectral circle
contradict with the result for positive matrix
only one eigenvalue ρ(A) on the spectral circle

⇒ eigenvalue ρ(A) > |µ| for all other eigenvalues µ
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Perron-Frobenius Theory-Perron

Frobenius Theorem

A2 =

[
0 1
1 0

]
, A3 =

[
0 1
0 0

]
, A4 =

[
1/2 1/2
1 0

]

Figure 9: Example 2-dimensional non-negative matrices and their properties
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Perron-Frobenius Theory

Powers of non-negative matrices

Theorem

Let A ∈ Rn×n, n ≥ 2 be non-negative with dominant eigenvalue λ and the right and
left eigenvectors are denoted by v and w of λ, v>w = 1. If λ is simple and strictly larger
in magnitude than all other eigenvalues, then we have

lim
k→∞

Ak

λk
= vw> (18)

Proof.

λ is simple and strictly larger ⇒ A = T

[
λ 01×n−1

0n−1×1 B

]
T−1 and ρ(B/λ) < 1

⇒ lim
k⇒∞

Bk/λk = 0 ⇒ lim
k⇒∞

(A
λ
)k = T ( lim

k⇒∞

[
1k 01×n−1

0n−1×1 Bk

]
)T−1 =

T ( lim
k⇒∞

[
1 01×n−1

0n−1×1 0n−1×n−1

]
)T−1 = vw>, v is the first column of T and w is the first

row of T−1.
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Consensus

Row-stochastic matrices (Let A be a row-stochastic matrix and let G
be its associated digraph)

the eigenvalue 1 is simple and all other eigenvalues |µ| < 1
lim
k→∞

Ak = 1nw
> for w > 0 and 1>nw = 1

G is an aperiodic strongly-connected graph

If the previous conditions are satisfied, then

the solution of x(k + 1) = Ax(k) satisfies lim
k⇒∞

x(k) = w>x(0)1n

if additionally A is doubly-stochastic, then w = 1
n1n so that

lim
k→∞

x(k) =
1>n x(0)

n
1n = average(x(0))1n (19)
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Summary

Discrete-time averaging systems

Background and application examples
Analysis intuition for convergence (consensus)
Conditions to ensure consensus and average consensus
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Q&A

Thank You!

Q&A
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