2021 ZJU-CSE Summer School

Lecture I: Introduction \& Convexity

Jinming Xu
Zhejiang University

August 02, 2021

Course Goals and Evaluation

- Goal of the course
- Prepare graduate students with advanced distributed control, optimization and learning methods for large-scale networked systems arising from modern control engineering and data science
- Topics
- Distributed Control and Estimation; Intelligent Autonomous Systems; Distributed Convex Opitmization; Acceleration Methods and ADMM; Distributed Stochastic Optimization; Distributed Learning in Non-convex World
- Reference Books
- There is no required specific textbook. All course mateirals will be presented in class and will be available online as notes.
- Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
Avaiable for free at https://web.stanford.edu/ boyd/cvxbook/
- Evaluation
- A certificate will be granted after completion of 80% of the course

Course Content

- Lectures (First Week, Aug 02-06)
- Convex Optimization
- Graph Basics and Consensus
- (Distributed) Stochastic Optimization
- Operator Splitting and ADMM
- Acceleration methods
- Seminar/Tutorials (Second Week, Aug 09-13)
- Distributed Convex Optimization
- Statistical Inference over Networks
- Distributed Stochastic Nonconvex Optimization
- Intelligent Unmanned Systems
- Distributed Load Frequency Control in Smart Grids

Invited Speakers ${ }^{1}$

Time Schedule for Lectures ${ }^{2}$

Week One (Aug 02-Aug 06)

Time	Monday (Aug 02)	Tuesday(Aug 03)	Wednesday(Aug 04)	Thursday(Aug 05)	Friday(Aug 06)
$\begin{aligned} & 8.30 \mathrm{am}- \\ & 12.00 \mathrm{pm} \\ & (\mathrm{GMT}+8) \end{aligned}$	Lecture I Introduction to the course Speaker Jinming Xu, ZJU (Yuquan Campus) Tencent Meeting ID: 752593984	Lecture II Convex Optimization Speaker Ying Sun, PSU (online) Tencent Meeting ID: 755843514	Lecture IV Distributed Convex Optimization Speaker Ying Sun, PSU (online) Tencent Meeting ID: 642952965	Lecture V Stochastic Optimization Speaker Ying Sun, PSU (online) Tencent Meeting ID: 708668998	Lecture VIII Advanced Topics(Operator Splitting, ADMM) Speaker Jinming Xu, ZJU (Yuquan Campus) Tencent Meeting ID: 479145622
$\begin{gathered} 12.00 \mathrm{pm}- \\ 2.30 \mathrm{pm} \\ (\mathrm{GMT}+8) \end{gathered}$	Lunch Break				
$\begin{gathered} 2.30 \mathrm{pm}- \\ 5.30 \mathrm{pm} \\ (\mathrm{GMT}+8) \end{gathered}$	Lab Tour Shining Gao/Anjun Chen (Yuquan Campus)	Lecture III Graph Basics and Consensus Speaker Prof Chengcheng Zhao, ZJU (Yuquan Campus) Tencent Meeting ID: 624997500	Research \& Discussion	Lecture VI Distributed Stochastic Optimization Speaker Kun Yuan, Damo Academy (Yuquan Campus) Tencent Meeting ID: 202219103	Lecture IX Advanced Topics(Acceleration) Speaker Huan Li, NKU (Yuquan Campus) Tencent Meeting ID: 962195511

${ }^{2}$ Refer to jinmingxu.github.io for more details.

Time Schedule for Tutorial/Seminar ${ }^{3}$

Week Two (Aug 09-Aug 13)

Time	Monday (Aug 09)	Tuesday(Aug 10)	Wednesday(Aug 11)	Thursday(Aug 12)	Friday(Aug 13)
$\begin{gathered} 8.30 \mathrm{am}-12.00 \\ \mathrm{pm} \\ (\mathrm{GMT}+8) \end{gathered}$	T/S I $\underset{\text { Prof. Usman Khan, Tufts }}{\text { Univ }}$ T/S II Prof. Hoi To Wai, CUHK	T/S III Prof Cesar Uribe, Rice $\begin{gathered} \text { T/S IV } \\ \text { Prof Angelia Nedich, } \\ \text { ASU } \end{gathered}$	T/S V Part I/Part II Prof Gesualdo Scutari, Purdue	T/S VI Prof Shichao liu, Carleton T/S VII Prof Xie Lihua, NTU	Group Sharing \& Discussion
$\begin{gathered} 12.00 \mathrm{pm}-2.30 \\ \mathrm{pm} \\ (\mathrm{GMT}+8) \end{gathered}$	Lunch Break				
$\begin{gathered} 2.30 \mathrm{pm}-5 \cdot 30 \\ \mathrm{pm} \\ (\mathrm{GMT}+8) \end{gathered}$	Lecture VII Distributed Control Speaker Prof Meng Wenchao, ZJU (Yuquan Campus)	Research \& Discussion	Research \& Discussion	Research \& Discussion	

${ }^{3}$ Refer to jinmingxu.github.io for more details.

Outline for Lecture I

Introduction
Optimization problems Convex sets and functions Operations that preserve convexity Convex problem and first-order optimality

Duality

Weak duality
Strong Duality
KKT conditions

Summary

Outline for Lecture I

Introduction
Optimization problems

Convex sets and functions

Operations that preserve convexity Convex problem and first-order optimality

Duality
Weak duality
Strong Duality

KKT conditions

Summary

Structure of Optimization Problems

- (Mathematical) optimization problem

$$
\begin{array}{rl}
p^{\star}:=\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & h_{i}(x) \leq 0, i=1,2, \ldots, m \\
& l_{j}(x)=0, j=1,2, \ldots, r
\end{array}
$$

$-x:=\left[x_{1}, \ldots, x_{n}\right]^{T}:$ optimization variables

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function
- $h_{i}, l_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$: constraint functions
- Feasible solution set (assume $\operatorname{dom} f=\mathbb{R}^{n}$)

$$
\mathcal{X}:=\left\{x \mid h_{i}(x) \leq 0, i=1,2, \ldots, m, l_{j}(x)=0, j=1,2, \ldots, r\right\}
$$

- Algorithms solving the above problem
- first order primal (dual) methods, second order methods,...

The Goal is to find a point that minimizes f among all feasible points

A brief history of optimization

- Theory (convex analysis): back to 1900s
- Algorithms [B \& V 2004],
- 1940s: simplex algorithm for linear programming (Dantzig)
- 1970s: subgradient methods; proximal point method (Rockafellar,...)
- 1980s: polynomial-time interior-point methods (Karmarkar, Nesterov \& Nemirovski)
- 1990s-now: accelerated method; parallel and distributed methods
- Applications
- before 1990: mostly in operations research; few in enginneing
- since 1990: many new applications in engineering, such as control, signal processing, communicaitons, and machine learning...
- Structure: from centralized to distributed (2010s-now)

Examples: l_{1}-regularized least square problem

- Measurement Model

$$
y=M x+v
$$

- $x \in \mathbb{R}^{d}$: the unknown parameter assumed to be sparse
- $M \in \mathbb{R}^{s \times d}$: measurement matrix
$-v \in \mathbb{R}^{s}:$ measurement noise
- $y \in \mathbb{R}^{s}$: the observation of a sensor

- Least square problem for a sensor

$$
\min _{x \in \mathbb{R}^{d}}\|y-M x\|^{2}+\|x\|_{1}
$$

- \|| $\|$ encoding the sparsity,
- arising from compressive sensing, image processing, etc.

Figure: A sensor network of 50 nodes

- Distributed Estimation

$$
\min _{x \in \mathbb{R}^{d}} \sum_{i=1}^{m}\left\|y_{i}-M_{i} x\right\|^{2}+\|x\|_{1}
$$

how to solve it when there is no center knowing all M_{i}, y_{i} ?

Examples: Support Vector Machine (SVM)

Consider m training samples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ with $y_{i} \in\{-1,+1\}$

- Look for a separating hyperplane $\left\{x \in \mathbb{R}^{d} \mid w^{T} x+b=0\right\}$ such that

$$
\left\{\begin{array}{l}
w^{T} x_{i}+b>0, \forall i \text { such that } y_{i}=+1, \\
w^{T} x_{i}+b<0, \forall i \text { such that } y_{i}=-1
\end{array}\right.
$$

- The min. point-to-hyperplane distance

$$
d=\min _{i} \frac{\left|w^{T} x_{i}+b\right|}{\|w\|}
$$

- scaling w, b such that $d\|w\|=1$
- Want to solve the following problem

$$
\begin{aligned}
& \max _{\{w, b\}} d=\frac{1}{\|w\|} \quad\left(\text { or } \min _{w}(1 / 2)\|w\|^{2}\right) \\
& \text { s.t. } y_{i}\left(w^{T} x_{i}+b\right) \geq 1, i=1,2, \ldots, N
\end{aligned}
$$

Figure: A hyperplane that separates the positive samples from negative ones (from Google)

How to solve it when the data set is distributed across several data centers?

Examples: Economic Dispatch of Power Systems

- Economic Dispatch Problem

$$
\min _{\mathbf{p} \in \mathbb{R}^{m}} C(\mathbf{p})=\sum_{i=1}^{m} C_{i}\left(p_{i}\right)
$$

s.t. $\sum_{i=1}^{m} p_{i}=\sum_{i=1}^{m} l_{i}, \underline{p}_{i} \leq p_{i} \leq \bar{p}_{i}, \forall i \in \mathcal{V}$.

- p_{i} : power generation of bus i,
- l_{i} : the load demand from bus i,
- $\underline{p}_{i}, \bar{p}_{i}$: capacity limit of bus i.
- Power generation model

$$
C_{i}\left(p_{i}\right)=a_{i} p_{i}^{2}+b_{i} p_{i}+c_{i}
$$

Figure: IEEE 14-Bus System ${ }^{4}$

- a_{i}, b_{i}, c_{i} are some coefficients related to bus i.
how to solve it when there is no center knowing all C_{i} ?

[^0]
Outline for Lecture I

Introduction
Optimization problems
Convex sets and functions
Operations that preserve convexity Convex problem and first-order optimality

Duality
Weak duality
Strong Duality
KKT conditions
Summary

Convex Sets and Functions

- Convex set: for any $x_{1}, x_{2} \in \mathcal{C}$ and any $\theta \in[01]$, we have

$$
\theta x_{1}+(1-\theta) x_{2} \in \mathcal{C}
$$

- examples: $\mathcal{S}:=\{x \mid A x=b\}$ or $\mathcal{S}:=\{x \mid A x \preceq b\}$
- Convex function: for all $x, y \in \mathbb{R}^{n}$, and any $\theta \in[01]$, we have

$$
\begin{aligned}
& f(\theta x+(1-\theta) y) \\
& \quad \leq \theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

- examples: $x^{2}, e^{x},-\log x, x \log x$
- f is concave if $-f$ is convex.

Convex Sets and Functions

- First-order condition for differentiable f

$$
\begin{aligned}
& f \text { is convex if and only if dom } f \text { is convex and } \\
& f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \\
& \hline
\end{aligned}
$$

- Second-order condition for twice differentiable f
f is convex if and only if dom f is convex and its Hessian is positive semi-definite, i.e., for all $x \in \operatorname{dom} f, \nabla^{2} f(x) \geq 0$
- Example: $f(x):=(1 / 2) x^{T} P x+q^{T} x+r$
- f is convex if and only if $P \succeq 0$

Jesen's Inequality

Lemma(Jesen's Inequality): Let f be convex, $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}^{+}$such that $\sum_{i=1}^{m} \lambda_{i}=1$. Then, $f\left(\sum_{i=1}^{m} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right)$

- For $m=2$, the above reduces to convexity.
- Examples: Let x be a random variable and ϕ be a convex function. Then, $\phi(E[x]) \leq E[\phi(x)]$.

Outline for Lecture I

Introduction
Optimization problems
Convex sets and functions
Operations that preserve convexity Convex problem and first-order optimality

Duality
Weak duality
Strong Duality

KKT conditions

Summary

Operations that preserve convexity

Let Γ denotes the class of convex functions.

- Nonnegative weighted sum

$$
f_{1}, f_{2} \in \Gamma \Rightarrow w_{1} f_{1}+w_{2} f_{2} \in \Gamma
$$

- negative entropy function: $\sum_{i} x_{i} \log x_{i}$
- sparsity prior (l_{1}-norm): $\sum_{i}\left|x_{i}\right|$
- Composition with affine function

$$
f \in \Gamma \Rightarrow f(A x+b) \in \Gamma
$$

- quatratic function: $\|A x+b\|^{2}$
- \log barrier function: $-\log \left(b-a^{T} x\right)$

Operations that preserve convexity

- Pointwise maximum

$$
f_{1}, f_{2} \in \Gamma \Rightarrow \max \left\{f_{1}, f_{2}\right\} \in \Gamma
$$

- piecewise linear function: $\max _{i}\left\{a_{i} x+b_{i}\right\}$
- Nesterov test function: $\max _{1 \leq i \leq d} x_{i}$
- Pointwise maximum over a set

If f convex in x for each $z \in \mathcal{Z}$, then

$$
g(x):=\max _{z \in \mathcal{Z}} f(x, z) \in \Gamma
$$

- support function: $\sigma_{\mathcal{C}}(x)=\max _{z \in \mathcal{C}} x^{T} z$
- dual norm $\|x\|_{*}:=\max _{\|z\| \leq 1} x^{T} z$

Outline for Lecture I

Introduction
Optimization problems
Convex sets and functions
Operations that preserve convexity
Convex problem and first-order optimality

Duality

Weak duality
Strong Duality

KKT conditions

Summary

Convex Optimization Problems

- Standard convex optimization problem

$$
\begin{aligned}
& p^{\star}:=\min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { subject to } h_{i}(x) \leq 0, i=1,2, \ldots, m, \\
& l_{j}(x)=0, j=1,2, \ldots, r
\end{aligned}
$$

Assumption 1:

The objective f and all $\left\{h_{i}\right\},\left\{l_{i}\right\}$ are convex and the optimal value p^{\star} is finite

- Why convexity?
- can understand and solve a broad class of convex problems
- nonconvex probems are mostly treated on a case-by-case basis

Special property: for a convex problem, local optima are global optima

First-order optimality condition

- For a convex problem

$$
\min _{x} f(x), \quad \text { s.t. } \quad x \in \mathcal{X}
$$

and differentiable f, a feasible point x is optimal if and only if

$$
\nabla f(x)^{T}(y-x) \geq 0 \text { for all } y \in \mathcal{X}
$$

- all feasible directions from x are aligned with gradient $\nabla f(x)$
- If $\mathcal{X}=\mathbb{R}^{n}$ (unconstrained optimization), then the first-order optimality condition reduces to

$$
\nabla f(x)=0
$$

Example: quadratic minimization

- Consider minimizing a quadratic problem as follows

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} \quad \frac{1}{2} x^{T} Q x+c^{T} x \\
\text { s.t. } A x=b
\end{gathered}
$$

with $Q \succ 0$. The first-order optimality condition says that the solution x^{\star} satisfies $A x^{\star}=b$ and

$$
\left\langle Q x^{\star}+c, y-x^{\star}\right\rangle \geq 0, \quad \forall y \text { such that } A y=b
$$

which is equivalent to

$$
\left\langle Q x^{\star}+c, z\right\rangle \geq 0, \forall z \in \operatorname{null}\{A\}
$$

- If the equality constraint is vacuous, the condition becomes

$$
Q x^{\star}+c=0, \quad \text { or namely, } \quad x^{\star}=-Q^{-1} c
$$

Outline for Lecture I

Introduction
Optimization problemsConvex sets and functions
Operations that preserve convexityConvex problem and first-order optimality
Duality
Weak duality
Strong Duality
KKT conditions
Summary
Duality19

Convex Optimization Problems

- Standard convex optimization problem

$$
\begin{array}{rl}
p^{\star}:=\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & h_{i}(x) \leq 0, i=1,2, \ldots, m \\
& l_{j}(x)=0, j=1,2, \ldots, r
\end{array}
$$

- where the objective f and all $\left\{h_{i}\right\},\left\{l_{i}\right\}$ are convex and the optimal value p^{\star} is finite
- We define the Lagrangian as

$$
L(x, \lambda, \nu):=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \nu_{j} l_{j}(x)
$$

- λ_{i} is Lagrange multiplier associated with $h_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $l_{i}(x)=0$

Weak Duality

- Lagarange dual function

$$
g(\lambda, \nu):=\min _{x} L(x, \lambda, \nu)=\min _{x}\left(f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \nu_{j} l_{j}(x)\right)
$$

- Lower bound property:

$$
\text { If } \lambda \succeq 0, \text { then } p^{\star} \geq g(\lambda, \nu)
$$

Remark: this always holds (even if primal problem is nonconvex) proof: Let \bar{x} be a feasible solution. Since $\lambda \succeq 0$, we have

$$
\begin{aligned}
f(\bar{x}) \geq f(\bar{x}) & +\sum_{i=1}^{m} \underbrace{\lambda_{i} h_{i}(\bar{x})}_{\leq 0}+\sum_{i=1}^{r} \underbrace{\nu_{i} l_{i}(\bar{x})}_{=0} \\
& =L(\bar{x}, \lambda, \nu) \geq \min _{x} L(x, \lambda, \nu)=g(\lambda, \nu)
\end{aligned}
$$

Then, minimizing over all feasible \bar{x} gives $p^{\star} \geq g(\lambda, \nu)$

Weak Duality

- Lagrange dual problem

$$
d^{\star}:=\max _{\lambda, \nu} g(\lambda, \nu)=\underbrace{\min _{x}\left(f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \nu_{j} l_{j}(x)\right)}_{\text {point-wise minimum of convex functions in }(\lambda, \nu)}
$$

subject to $\lambda_{i} \geq 0, i=1,2, \ldots, m$
$-d^{\star}$ is the "best" estimate for the primal optimal value
Remark: always concave (even when primal problem is not convex)

- Duality gap

$$
G:=p^{\star}-d^{\star} \geq 0
$$

- always have $G \geq 0$ due to weak duality
- if $d^{\star}=p^{\star}$, we say zero duality gap (or strong duality holds).

An Example for Duality Gap

- Consider a two-dimensional problem

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{2}} e^{x_{2}} \\
\text { subject to }\|x\|-x_{1} \leq 0
\end{gathered}
$$

- Feasible solution $x_{1} \geq 0, x_{2}=0 \Rightarrow p^{\star}=1$.
- Consider now the dual function

$$
g(\lambda)=\min _{x \in \mathbb{R}^{2}} e^{x_{2}}+\lambda \underbrace{\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right)}_{\geq 0}
$$

which is positive for all $\lambda \geq 0$

An Example for Duality Gap

- Also, we can show that $g(\lambda) \leq 0 \forall \lambda \geq 0$. Let us restrict x to vary such that $x_{1}=x_{2}^{4}$:

$$
\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}=\frac{x_{2}^{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}+x_{1}}=\frac{x_{2}^{2}}{\sqrt{x_{2}^{8}+x_{2}^{2}+x_{2}^{4}}} \leq \frac{1}{x_{2}^{2}}
$$

- Thus, we have $x_{2} \rightarrow-\infty \Rightarrow \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \rightarrow 0$
- It follows that

$$
g(\lambda) \leq \min _{x_{2}<0, x_{1}=x_{2}^{4}} e^{x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right)=0 \forall \lambda \geq 0
$$

which, together with $g(\lambda) \geq 0 \forall \lambda \geq 0$, shows that $g(\lambda)=0$ for all $\lambda \geq 0$ and thus $d^{\star}=\max _{\lambda \geq 0} g(\lambda)=0$.

- There is a duality gap $G=p^{\star}-d^{\star}=1$!

Strong Duality

- Slater condition

There exists a feasible $\bar{x} \in \mathbb{R}^{n}$ such that

$$
h_{i}(\bar{x})<0 \text { (strictly feasible), for all } i=1,2, \ldots, m
$$

Remark: linear inequalities do not need to be strict!
Theorem: Let Assumption 1 and the Slater condition hold. Then,

- There is no duality gap, i.e., $d^{\star}=p^{\star}$
- The set of dual optimal solutions is nonempty and bounded
- If strong duality holds
- KKT conditions (which are always sufficient) becomes necessary.
- since $p^{\star}=d^{\star}$, instead of solving primal problem with complex constraints, we can

Solve it from the dual
which usually have simpler constraints, smaller dimension and thus algorithmically favorite!

The Dual of a Quadratic Program

- Consider the quadratic programming problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} Q x+c^{T} x, \text { subject to } A x \preceq b
$$

where $Q \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{r \times n}$ with $r \ll n$

- Lagrange dual function

$$
g(\lambda)=\min _{x} \frac{1}{2} x^{T} Q x+c^{T} x+\lambda^{T}(A x-b)
$$

which attains its minimum at $x=-Q^{-1}\left(c+A^{T} \lambda\right)$

- Dual problem becomes:

$$
\max _{\lambda} g(\lambda):=-\frac{1}{2} \lambda^{T} P \lambda-a^{T} \lambda, \text { subject to } \lambda \succeq 0
$$

where $P=A Q^{-1} A^{T}, a=b+A Q^{-1} c$ with $P \in \mathbb{R}^{r \times r}$
much smaller dimension and simpler constraints!

Duality in Linear Programs

Given $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$:
primal problem

$$
\min _{x \in \mathbb{R}^{n}} c^{T} x
$$

subject to $A x \preceq b$

dual problem

$$
\begin{gathered}
\max _{\lambda \in \mathbb{R}^{m}}-b^{T} \lambda \\
\text { subject to } A^{T} \lambda+c=0, \lambda \succeq 0
\end{gathered}
$$

- Lagrange dual function

$$
\left.g(\lambda)=\min _{x}\left\{\left(c+A^{T} \lambda\right)^{T} x-\lambda^{T} b\right)\right\}=\left\{\begin{array}{l}
-b^{T} \lambda, A^{T} \lambda+c=0 \\
-\infty, \text { otherwise }
\end{array}\right.
$$

- Slater condition holds for linear constraints, thus $p^{\star}=d^{\star}$
- the primal variable $x \in \mathbb{R}^{n}$ Versus the dual variable $\lambda \in \mathbb{R}^{m}$.

The Dual of SVM problem

- Recall the SVM problem

$$
\begin{aligned}
& \min _{w} \\
& \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{T} x_{i}+b\right) \geq 1, i=1,2, \ldots, m
\end{aligned}
$$

- Lagrange dual function

$$
g(\lambda)=\min _{w, b} \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left(1-y_{i}\left(w^{T} x_{i}+b\right)\right)
$$

- attaining optimality at $w=\sum_{i=0}^{m} \lambda_{i} y_{i} x_{i}, \sum_{i=0}^{m} \lambda_{i} y_{i}=0$
- Dual problem becomes:

$$
\begin{gathered}
\max _{\left\{\lambda_{i}\right\}} g(\lambda):=\sum_{i=0}^{m} \lambda_{i}-\frac{1}{2} \sum_{i=0}^{m} \sum_{j=0}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} \underbrace{\left\langle x_{i}, x_{j}\right\rangle}_{\text {kernel }} \\
\text { s.t. } \sum_{i=0}^{m} \lambda_{i} y_{i}=0, \lambda_{i} \geq 0, \forall i
\end{gathered}
$$

Outline for Lecture I

Introduction
 Optimization problems
 Convex sets and functions
 Operations that preserve convexity Convex problem and first-order optimality
 Duality
 Weak duality
 Strong Duality

KKT conditions

Summary

Convex Optimization Problems

- Standard convex optimization problem

$$
\begin{array}{rl}
p^{\star}:=\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & h_{i}(x) \leq 0, i=1,2, \ldots, m \\
& l_{j}(x)=0, j=1,2, \ldots, r
\end{array}
$$

- The KKT (Karush-Kuhn-Tucker) conditions
- (stationarity)

$$
0 \in \nabla_{x} L(x, \lambda, \nu):=\nabla_{x}\left(f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \nu_{j} l_{j}(x)\right)
$$

- (complementary slackness) $\quad \lambda_{i} \cdot h_{i}(x)=0$, for all i
- (primal feasibility) $h_{i}(x) \leq 0, l_{i}(x)=0$, for all i, j
- (dual feasibility) $\lambda_{i} \geq 0$, for all i
- For unconstrained problems, the KKT conditions reduces to the ordinary optimality condition, i.e., $0 \in \partial f\left(x^{\star}\right)$.

Implication of KKT conditions

KKT conditions always sufficient; also necessary under strong duality.
Theorem: For a problem with strong duality, x^{\star} is a primal optimal and $\lambda^{\star}, \nu^{\star}$ a dual optimal solution if and only if x^{\star} and $\lambda^{\star}, \nu^{\star}$ satisfy the KKT conditions.

Why KKT conditions?

- provide a certificate of optimality for primal-dual pairs
- exploited in algorithm design and analysis
- to verify optimality/suboptimality
- as design principle (algorithms designed for solving KKT equations)
- Limitations: sometimes, KKT conditions do not really give us a way to find solution, but gives a better understanding and allow us to screen away some improper points before performing optimization.

Proof for Necessity

Let x^{\star} and $\lambda^{\star}, \nu^{\star}$ be primal and dual optimal solutions with zero duality gap ($p^{\star}=g^{\star}$). Then

$$
\begin{aligned}
f\left(x^{\star}\right) & =g\left(\lambda^{\star}, \nu^{\star}\right) \\
& =\min _{x} f(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} h_{i}(x)+\sum_{j=1}^{r} \nu_{j}^{\star} l_{j}(x) \\
& \leq f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} h_{i}\left(x^{\star}\right)+\sum_{j=1}^{r} \nu_{j}^{\star} l_{j}\left(x^{\star}\right) \\
& \leq f\left(x^{\star}\right)
\end{aligned}
$$

- The point x^{\star} achieves the Lagrangian Optimality in x, i.e., $x^{\star}=\inf _{x} L\left(x, \lambda^{\star}, \nu^{\star}\right)$, which is the staionary condition.
- By feasibility of x^{\star}, we must have $\sum_{i=1}^{m} \lambda_{i}^{\star} h_{i}\left(x^{\star}\right)=0$, which in turn implies that $\lambda_{i}^{\star} h_{i}\left(x^{\star}\right)=0$ (note that $\left.h_{i}\left(x^{\star}\right) \leq 0, \forall i\right)$, which is the complementary slackness.

Proof for Sufficiency

If there exists $x^{\star}, \lambda^{\star}, \nu^{\star}$ that satisfies the KKT conditions, then

$$
\begin{aligned}
g\left(\lambda^{\star}, \nu^{\star}\right) & =\min _{x} L\left(x, \lambda^{\star}, \nu^{\star}\right) \\
& \stackrel{(a)}{=} f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} h_{i}\left(x^{\star}\right)+\sum_{j=1}^{r} \nu_{j}^{\star} l_{j}\left(x^{\star}\right)=f\left(x^{\star}\right) \\
& \stackrel{(b)}{\geq} f\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i} h_{i}\left(x^{\star}\right)+\sum_{j=1}^{r} \nu_{j} l_{j}\left(x^{\star}\right)=L\left(x^{\star}, \lambda, \nu\right) \\
& \geq \min _{x} L(x, \lambda, \nu)=g(\lambda, \nu), \forall \lambda \geq 0
\end{aligned}
$$

where (a) holds from the stationary condition and (b) holds from complementary slackness.

- The above together with the dual feasibility implies that the dual solution pair $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal.
- The above together with strong duality and primal feasibility also leads to the fact that $f^{\star}=g\left(\lambda^{\star}, \nu^{\star}\right)=f\left(x^{\star}\right)$, which implies that the primal solution x^{\star} is primal optimal.

Example: quadratic with equality constraints

- Consider the following problem with $Q \succeq 0$

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{T} Q x+c^{T} x \\
\text { s.t. } & A x=b
\end{array}
$$

- Lagrangian function

$$
L(x, \lambda)=\frac{1}{2} x^{T} Q x+c^{T} x+\lambda^{T}(A x-b)
$$

- KKT conditions
- stationary condition

$$
Q x+A^{T} \lambda=-c, A x-b=0, \text { or equivalently }\left[\begin{array}{cc}
Q & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
-c \\
b
\end{array}\right]
$$

- the above probelm reduces to solving linear system of equations (complementary slackness and dual feasiblity are vacuous)

Example: support vector machines

- Recall the SVM problem

$$
\begin{aligned}
& \min _{w} \\
& \frac{1}{2}\|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{T} x_{i}+b\right) \geq 1, i=1,2, \ldots, m
\end{aligned}
$$

- Lagrangian function

$$
L(w, \lambda)=\frac{1}{2}\|w\|^{2}+\sum_{i} \lambda_{i}\left(1-y_{i}\left(w^{T} x_{i}-b\right)\right)
$$

- KKT conditions
- stationary condition

$$
\sum_{i=1}^{m} \lambda_{i} y_{i}=0, \quad w=\sum_{i}^{m} \lambda_{i} y_{i} x_{i}
$$

- complementary slackness

$$
\lambda_{i}\left(1-y_{i}\left(w^{T} x_{i}-b\right)\right)=0, \forall i=1,2, \ldots, m
$$

- $\lambda_{i} \neq 0$ only when $1=y_{i}\left(w^{T} x_{i}-b\right)$;

Summary

- Convex sets and functions
- convex set: $\theta x_{1}+(1-\theta) x_{2} \in \mathcal{C}$
- convex function: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
- operations that preserve conexity
- Weak duality and duality gap
$-G=p^{\star}-d^{\star} \geq 0$
- always true even primal problem is nonconvex
- Strong duality and its implication
$-p^{\star}=d^{\star}$
- solve the primal from the dual that is usually simpler
- KKT conditions and its implication

References

Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge University press, 2004.
围 Dimitri P., Bertsekas, Angelia, Nedich and Asuman E., Ozdaglar. Convex Analysis and Optimization. Athena Scientific, 2003.
R Angelia, Nedich. Lecture Notes for Convex Optimization. University of Illinois Urbana-Champaign, 2008.
Ryan Tibshirani, Lecture Notes for Convex Optimzation. Carnegie Mellon University, 2018.

[^0]: ${ }^{4}$ more details at http://icseg.iti.illinois.edu/ieee-14-bus-system/

