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Course Goals and Evaluation

I Goal of the course

– Prepare graduate students with advanced distributed control,
optimization and learning methods for large-scale networked systems
arising from modern control engineering and data science

I Topics

– Distributed Control and Estimation; Intelligent Autonomous
Systems; Distributed Convex Opitmization; Acceleration Methods
and ADMM; Distributed Stochastic Optimization; Distributed
Learning in Non-convex World

I Reference Books

– There is no required specific textbook. All course mateirals will be
presented in class and will be available online as notes.

– Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.
Avaiable for free at https://web.stanford.edu/ boyd/cvxbook/

I Evaluation

– A certificate will be granted after completion of 80% of the course
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Course Content

I Lectures (First Week, Aug 02-06)

– Convex Optimization
– Graph Basics and Consensus
– (Distributed) Stochastic Optimization
– Operator Splitting and ADMM
– Acceleration methods

I Seminar/Tutorials (Second Week, Aug 09-13)

– Distributed Convex Optimization
– Statistical Inference over Networks
– Distributed Stochastic Nonconvex Optimization
– Intelligent Unmanned Systems
– Distributed Load Frequency Control in Smart Grids
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Invited Speakers1

1Refer to jinmingxu.github.io for more details.
4



Time Schedule for Lectures2

2Refer to jinmingxu.github.io for more details.
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Time Schedule for Tutorial/Seminar3

3Refer to jinmingxu.github.io for more details.
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Structure of Optimization Problems

I (Mathematical) optimization problem

p? := min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, 2, ...,m,

lj(x) = 0, j = 1, 2, ..., r

– x := [x1, ..., xn]
T : optimization variables

– f : Rn → R: objective function
– hi, lj : Rn → R: constraint functions

I Feasible solution set (assume dom f = Rn)

X := {x|hi(x) ≤ 0, i = 1, 2, ...,m, lj(x) = 0, j = 1, 2, ..., r}

I Algorithms solving the above problem
– first order primal (dual) methods, second order methods,...

The Goal is to find a point that minimizes f among all feasible points
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A brief history of optimization

I Theory (convex analysis): back to 1900s
I Algorithms [B & V 2004],

– 1940s: simplex algorithm for linear programming (Dantzig)
– 1970s: subgradient methods; proximal point method (Rockafellar,...)
– 1980s: polynomial-time interior-point methods (Karmarkar, Nesterov

& Nemirovski)
– 1990s-now: accelerated method; parallel and distributed methods

I Applications
– before 1990: mostly in operations research; few in enginneing
– since 1990: many new applications in engineering, such as control,

signal processing, communicaitons, and machine learning...

I Structure: from centralized to distributed (2010s-now)

Parallel 
Optimization

Distributed 
Optimization

Centralized 
Optimization

Decentralized
Data Storage

Decentralized 
Computation

Introduction 8



Examples: l1-regularized least square problem

I Measurement Model

y = Mx+ v

– x ∈ Rd: the unknown parameter
assumed to be sparse

– M ∈ Rs×d: measurement matrix
– v ∈ Rs: measurement noise
– y ∈ Rs: the observation of a sensor

I Least square problem for a sensor

min
x∈Rd

‖y −Mx‖2 + ‖x‖1

– ‖·‖ encoding the sparsity,
– arising from compressive sensing,

image processing, etc.

Figure: A sensor network of 50 nodes

I Distributed Estimation

min
x∈Rd

m∑
i=1

‖yi −Mix‖2+‖x‖1

how to solve it when there is no center knowing all Mi, yi?
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Examples: Support Vector Machine (SVM)

Consider m training samples (x1, y1), ..., (xm, ym) with yi ∈ {−1,+1}

I Look for a separating hyperplane
{x ∈ Rd|wTx+ b = 0} such that{
wTxi + b > 0, ∀i such that yi = +1,

wTxi + b < 0, ∀i such that yi = −1

I The min. point-to-hyperplane distance

d = min
i

∣∣wTxi + b
∣∣

‖w‖

– scaling w, b such that d ‖w‖ = 1

I Want to solve the following problem

max
{w,b}

d =
1

‖w‖
(or min

w
(1/2) ‖w‖2)

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, ..., N

Figure: A hyperplane that separates
the positive samples from negative
ones (from Google)

How to solve it when the data
set is distributed across
several data centers?
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Examples: Economic Dispatch of Power Systems

I Economic Dispatch Problem

min
p∈Rm

C(p) =
m∑
i=1

Ci(pi)

s.t.
m∑
i=1

pi =
m∑
i=1

li, p
i
≤ pi ≤ pi, ∀i ∈ V.

– pi: power generation of bus i,
– li: the load demand from bus i,
– p

i
, pi: capacity limit of bus i.

I Power generation model

Ci(pi) = aip
2
i + bipi + ci,

– ai, bi, ci are some coefficients
related to bus i.

Figure: IEEE 14-Bus System4

how to solve it when there is no center knowing all Ci?

4more details at http://icseg.iti.illinois.edu/ieee-14-bus-system/
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Convex Sets and Functions

I Convex set: for any x1, x2 ∈ C and any θ ∈ [0 1], we have

θx1 + (1− θ)x2 ∈ C

– examples: S := {x|Ax = b} or S := {x|Ax � b}
I Convex function: for all x, y ∈ Rn, and any θ ∈ [0 1], we have

f(θx+ (1− θ)y)
≤ θf(x) + (1− θ)f(y)

– examples: x2, ex,− log x, x log x
– f is concave if −f is convex.
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Convex Sets and Functions

I First-order condition for differentiable f

f is convex if and only if dom f is convex and
f(y) ≥ f(x) +∇f(x)T (y − x)

I Second-order condition for twice differentiable f

f is convex if and only if dom f is convex and its Hessian
is positive semi-definite, i.e., for all x ∈ dom f , ∇2f(x) ≥ 0

– Example: f(x) := (1/2)xTPx+ qTx+ r
– f is convex if and only if P � 0
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Jesen’s Inequality

Lemma(Jesen’s Inequality): Let f be convex, x1, x2, ..., xm ∈ Rn
and λ1, λ2, ..., λm ∈ R+ such that

∑m
i=1 λi = 1. Then,

f(
∑m
i=1 λixi) ≤

∑m
i=1 λif(xi)

I For m = 2, the above reduces to convexity.

I Examples: Let x be a random variable and φ be a convex function.
Then, φ(E[x]) ≤ E[φ(x)].
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Operations that preserve convexity

Let Γ denotes the class of convex functions.

I Nonnegative weighted sum

f1, f2 ∈ Γ⇒ w1f1 + w2f2 ∈ Γ

– negative entropy function:
∑

i xi log xi
– sparsity prior (l1-norm):

∑
i |xi|

I Composition with affine function

f ∈ Γ⇒ f(Ax+ b) ∈ Γ

– quatratic function: ‖Ax+ b‖2
– log barrier function: − log(b− aTx)
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Operations that preserve convexity

I Pointwise maximum

f1, f2 ∈ Γ⇒ max{f1, f2} ∈ Γ

– piecewise linear function: maxi{aix+ bi}
– Nesterov test function: max1≤i≤d xi

I Pointwise maximum over a set
If f convex in x for each z ∈ Z, then

g(x) := max
z∈Z

f(x, z) ∈ Γ

– support function: σC(x) = maxz∈C x
T z

– dual norm ‖x‖∗ := max‖z‖≤1 x
T z

Introduction 16
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Convex Optimization Problems

I Standard convex optimization
problem

p? := min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, 2, ...,m,

lj(x) = 0, j = 1, 2, ..., r

I Why convexity?

– can understand and solve a
broad class of convex problems

– nonconvex probems are mostly
treated on a case-by-case basis

Special property: for a convex problem, local optima are global optima

Assumption 1:
The objective f and
all {hi}, {li} are convex and
the optimal value p? is finite

Introduction 17



First-order optimality condition

I For a convex problem

min
x
f(x), s.t. x ∈ X

and differentiable f , a feasible
point x is optimal if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ X

I all feasible directions from x are aligned with gradient ∇f(x)

I If X = Rn (unconstrained optimization), then the first-order
optimality condition reduces to

∇f(x) = 0.

Introduction 18



Example: quadratic minimization

I Consider minimizing a quadratic problem as follows

min
x∈Rn

1

2
xTQx+ cTx

s.t. Ax = b

with Q � 0. The first-order optimality condition says that the
solution x? satisfies Ax? = b and

〈Qx? + c, y − x?〉 ≥ 0, ∀y such that Ay = b

which is equivalent to

〈Qx? + c, z〉 ≥ 0,∀z ∈ null{A}

I If the equality constraint is vacuous, the condition becomes

Qx? + c = 0, or namely, x? = −Q−1c

Introduction 19
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Convex Optimization Problems

I Standard convex optimization problem

p? := min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, 2, ...,m,

lj(x) = 0, j = 1, 2, ..., r

– where the objective f and all {hi}, {li} are convex and
the optimal value p? is finite

I We define the Lagrangian as

L(x, λ, ν) := f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

νj lj(x)

– λi is Lagrange multiplier associated with hi(x) ≤ 0
– νi is Lagrange multiplier associated with li(x) = 0

Duality 20



Weak Duality

I Lagarange dual function

g(λ, ν) := min
x
L(x, λ, ν) = min

x

f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

νj lj(x)


I Lower bound property:

If λ � 0, then p? ≥ g(λ, ν)

Remark: this always holds (even if primal problem is nonconvex)
proof: Let x̄ be a feasible solution. Since λ � 0, we have

f(x̄) ≥ f(x̄) +

m∑
i=1

λihi(x̄)︸ ︷︷ ︸
≤0

+

r∑
i=1

νili(x̄)︸ ︷︷ ︸
=0

= L(x̄, λ, ν) ≥ min
x
L(x, λ, ν) = g(λ, ν)

Then, minimizing over all feasible x̄ gives p? ≥ g(λ, ν)
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Weak Duality

I Lagrange dual problem

d? := max
λ,ν

g(λ, ν) = min
x

f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

νj lj(x)


︸ ︷︷ ︸

point-wise minimum of convex functions in (λ,ν)

subject to λi ≥ 0, i = 1, 2, ...,m

– d? is the “best” estimate for the primal optimal value

Remark: always concave (even when primal problem is not convex)

I Duality gap

G := p? − d? ≥ 0

– always have G ≥ 0 due to weak duality
– if d? = p?, we say zero duality gap (or strong duality holds).
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An Example for Duality Gap

I Consider a two-dimensional problem

min
x∈R2

ex2

subject to ‖x‖ − x1 ≤ 0

I Feasible solution x1 ≥ 0, x2 = 0 ⇒ p? = 1.

I Consider now the dual function

g(λ) = min
x∈R2

ex2 + λ

(√
x21 + x22 − x1

)
︸ ︷︷ ︸

≥0

which is positive for all λ ≥ 0

Duality 23



An Example for Duality Gap

I Also, we can show that g(λ) ≤ 0 ∀λ ≥ 0. Let us restrict x to vary
such that x1 = x42:√

x21 + x22 − x1 =
x22√

x21 + x22 + x1
=

x22√
x82 + x22 + x42

≤ 1

x22

I Thus, we have x2 → −∞ ⇒
√
x21 + x22 − x1 → 0

I It follows that

g(λ) ≤ min
x2<0,x1=x4

2

ex2 + λ

(√
x21 + x22 − x1

)
= 0 ∀λ ≥ 0

which, together with g(λ) ≥ 0 ∀λ ≥ 0, shows that g(λ) = 0 for all
λ ≥ 0 and thus d? = maxλ≥0 g(λ) = 0.

I There is a duality gap G = p? − d? = 1!
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Strong Duality

I Slater condition

There exists a feasible x̄ ∈ Rn such that
hi(x̄) < 0 (strictly feasible), for all i = 1, 2, ...,m.

Remark: linear inequalities do not need to be strict!

Theorem: Let Assumption 1 and the Slater condition hold. Then,

– There is no duality gap, i.e., d? = p?

– The set of dual optimal solutions is nonempty and bounded

I If strong duality holds

– KKT conditions (which are always sufficient) becomes necessary.
– since p? = d?, instead of solving primal problem with complex

constraints, we can

Solve it from the dual

which usually have simpler constraints, smaller dimension and thus
algorithmically favorite!
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The Dual of a Quadratic Program

I Consider the quadratic programming problem

min
x∈Rn

1

2
xTQx+ cTx, subject to Ax � b

where Q ∈ Rn×n, A ∈ Rr×n with r << n
I Lagrange dual function

g(λ) = min
x

1

2
xTQx+ cTx+ λT (Ax− b)

which attains its minimum at x = −Q−1(c+ATλ)
I Dual problem becomes:

max
λ

g(λ) := −1

2
λTPλ− aTλ, subject to λ � 0

where P = AQ−1AT , a = b+AQ−1c with P ∈ Rr×r

much smaller dimension and simpler constraints!
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Duality in Linear Programs

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm:

primal problem

min
x∈Rn

cTx

subject to Ax � b

dual problem

max
λ∈Rm

− bTλ

subject to ATλ+ c = 0, λ � 0

I Lagrange dual function

g(λ) = min
x

{
(c+ATλ)Tx− λT b)

}
=

{
−bTλ, ATλ+ c = 0

−∞, otherwise

– Slater condition holds for linear constraints, thus p? = d?

– the primal variable x ∈ Rn Versus the dual variable λ ∈ Rm.
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The Dual of SVM problem

I Recall the SVM problem

min
w

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, ...,m

I Lagrange dual function

g(λ) = min
w,b

1

2
‖w‖2 +

m∑
i=1

λi(1− yi(wTxi + b))

– attaining optimality at w =
∑m

i=0 λiyixi,
∑m

i=0 λiyi = 0
I Dual problem becomes:

max
{λi}

g(λ) : =

m∑
i=0

λi −
1

2

m∑
i=0

m∑
j=0

λiλjyiyj 〈xi, xj〉︸ ︷︷ ︸
kernel

,

s.t.
m∑
i=0

λiyi = 0, λi ≥ 0,∀i

Duality 28
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Convex Optimization Problems

I Standard convex optimization problem

p? := min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, 2, ...,m,

lj(x) = 0, j = 1, 2, ..., r

I The KKT (Karush-Kuhn-Tucker) conditions

– (stationarity)

0 ∈ ∇xL(x, λ, ν) := ∇x

(
f(x) +

∑m
i=1 λihi(x) +

∑r
j=1 νj lj(x)

)
– (complementary slackness) λi · hi(x) = 0, for all i
– (primal feasibility) hi(x) ≤ 0, li(x) = 0, for all i, j
– (dual feasibility) λi ≥ 0, for all i

I For unconstrained problems, the KKT conditions reduces to the
ordinary optimality condition, i.e., 0 ∈ ∂f(x?).
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Implication of KKT conditions

KKT conditions always sufficient; also necessary under strong duality.

Theorem: For a problem with strong duality,
x? is a primal optimal and λ?, ν? a dual optimal solution

if and only if x? and λ?, ν? satisfy the KKT conditions.

Why KKT conditions?

I provide a certificate of optimality for primal-dual pairs

I exploited in algorithm design and analysis

– to verify optimality/suboptimality
– as design principle (algorithms designed for solving KKT equations)

I Limitations: sometimes, KKT conditions do not really give us a way
to find solution, but gives a better understanding and allow us to
screen away some improper points before performing optimization.
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Proof for Necessity

Let x? and λ?, ν? be primal and dual optimal solutions with zero duality
gap (p? = g?). Then

f(x?) = g(λ?, ν?)

= min
x
f(x) +

m∑
i=1

λ?i hi(x) +

r∑
j=1

ν?j lj(x)

≤ f(x?) +

m∑
i=1

λ?i hi(x
?) +

r∑
j=1

ν?j lj(x
?)

≤ f(x?)

I The point x? achieves the Lagrangian Optimality in x, i.e.,
x? = infx L(x, λ?, ν?), which is the staionary condition.

I By feasibility of x?, we must have
∑m
i=1 λ

?
i hi(x

?) = 0, which in turn
implies that λ?i hi(x

?) = 0 (note that hi(x
?) ≤ 0,∀i), which is the

complementary slackness.
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Proof for Sufficiency

If there exists x?, λ?, ν? that satisfies the KKT conditions, then

g(λ?, ν?) = min
x
L(x, λ?, ν?)

(a)
= f(x?) +

m∑
i=1

λ?i hi(x
?) +

r∑
j=1

ν?j lj(x
?) = f(x?)

(b)

≥ f(x?) +

m∑
i=1

λihi(x
?) +

r∑
j=1

νj lj(x
?) = L(x?, λ, ν)

≥ min
x
L(x, λ, ν) = g(λ, ν),∀λ ≥ 0

where (a) holds from the stationary condition and (b) holds from
complementary slackness.
I The above together with the dual feasibility implies that the dual

solution pair (λ?, ν?) is dual optimal.
I The above together with strong duality and primal feasibility also

leads to the fact that f? = g(λ?, ν?) = f(x?), which implies that
the primal solution x? is primal optimal.
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Example: quadratic with equality constraints

I Consider the following problem with Q � 0

min
x∈Rn

1

2
xTQx+ cTx

s.t. Ax = b

I Lagrangian function

L(x, λ) =
1

2
xTQx+ cTx+ λT (Ax− b)

I KKT conditions

– stationary condition

Qx+ATλ = −c, Ax− b = 0, or equivalently

[
Q AT

A 0

] [
x
λ

]
=

[
−c
b

]
– the above probelm reduces to solving linear system of equations

(complementary slackness and dual feasiblity are vacuous)
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Example: support vector machines

I Recall the SVM problem

min
w

1

2
‖w‖2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, ...,m

I Lagrangian function

L(w, λ) =
1

2
‖w‖2 +

∑
i

λi(1− yi(wTxi − b))

I KKT conditions

– stationary condition

m∑
i=1

λiyi = 0, w =

m∑
i

λiyixi

– complementary slackness

λi(1−yi(wTxi−b)) = 0, ∀i = 1, 2, ...,m

– λi 6= 0 only when 1 = yi(w
Txi − b);

Such points are called the support vectors
KKT conditions 34



Summary

I Convex sets and functions

– convex set: θx1 + (1− θ)x2 ∈ C
– convex function: f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
– operations that preserve conexity

I Weak duality and duality gap

– G = p? − d? ≥ 0
– always true even primal problem is nonconvex

I Strong duality and its implication

– p? = d?

– solve the primal from the dual that is usually simpler

I KKT conditions and its implication

Summary 35
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